6 research outputs found

    A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    Get PDF
    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses

    Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi.

    Get PDF
    Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual. Here we use DNA-DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic
    corecore