208 research outputs found

    Frontal and Lateral Submarine Lobe Fringes: Comparing Sedimentary Facies, Architecture and Flow Processes

    Get PDF
    Submarine lobe fringe deposits form heterolithic successions that may include a high proportion of hybrid beds. The identification of lobe fringe successions aids interpretation of paleogeographic setting and the degree of basin confinement. Here, for the first time, the sedimentological and architectural differences between frontal and lateral lobe fringe deposits are investigated. Extensive outcrop and core data from Fan 4, Skoorsteenberg Formation, Karoo Basin, South Africa, allow the rates and style of facies changes from axis to fringe settings of lobes and lobe complexes in both down-dip (frontal) and across-strike (lateral) directions to be tightly constrained over a 800 km2 study area. Fan 4 comprises three sand-prone divisions that form compensationally stacked lobe complexes, separated by thick packages of thin-bedded siltstone and sandstone intercalated with (muddy) siltstone, interpreted as the fringes of lobe complexes. Lobe-fringe facies associations comprise: i) thick-bedded structureless or planar laminated sandstones that pinch and swell, and are associated with underlying debrites; ii) argillaceous and mudclast-rich hybrid beds; and iii) current ripple-laminated sandstones and siltstones. Typically, frontal fringes contain high proportions of hybrid beds and transition from thick-bedded sandstones over length-scales of 1 to 2 km. In contrast, lateral fringe deposits tend to comprise current ripple-laminated sandstones that transition to thick-bedded sandstones in the lobe axis over several kilometers. Variability of primary flow processes are interpreted to control the documented differences in facies association. Preferential deposition of hybrid beds in frontal fringe positions is related to the dominantly downstream momentum of the high-density core of the flow. In contrast, the ripple-laminated thin beds in lateral fringe positions are interpreted to be deposited by more dilute low-density (parts of the) flows. The development of recognition criteria to distinguish between frontal and lateral lobe fringe successions is critical to improving paleogeographic reconstructions of submarine fans at outcrop and in the subsurface, and will help to reduce uncertainty during hydrocarbon field appraisal and development

    Stratigraphic hierarchy and three‐dimensional evolution of an exhumed submarine slope channel system

    Get PDF
    Submarine slope channel systems have complicated three‐dimensional geometries and facies distributions, which are challenging to resolve using subsurface data. Outcrop analogues can provide sub‐seismic‐scale detail, although most exhumed systems only afford two‐dimensional constraints on the depositional architecture. A rare example of an accessible fine‐grained slope channel complex set situated in a tectonically quiescent basin that offers seismic‐scale, down‐dip and across‐strike exposures is the Klein Hangklip area, Tanqua‐Karoo Basin, South Africa. This study investigates the three‐dimensional architecture of this channel complex set to characterise the stratigraphic evolution of a submarine channel‐fill and the implications this has for both sediment transport to the deep‐oceans and reservoir quality distribution. Correlated sedimentary logs and mapping of key surfaces across a 3 km2 area reveal that: (i) the oldest channel elements in channel complexes infill relatively deep channel cuts and have low aspect‐ratios. Later channel elements are bound by comparatively flat erosion surfaces and have high aspect‐ratios; (ii) facies changes across depositional strike are consistent and predictable; conversely, facies change in successive down depositional dip positions indicating longitudinal variability in depositional processes; (iii) stratigraphic architecture is consistent and predictable at seismic‐scale both down‐dip and across‐strike in three‐dimensions; (iv) channel‐base‐deposits exhibit spatial heterogeneity on one to hundreds of metres length‐scales, which can inhibit accurate recognition and interpretations drawn from one‐dimensional or limited two‐dimensional datasets; and (v) channel‐base‐deposit character is linked to sediment bypass magnitude and longevity, which suggests that time‐partitioning is biased towards conduit excavation and maintenance rather than the fill‐phase. The data provide insights into the stratigraphic evolution and architecture of slope channel‐fills on fine‐grained continental margins and can be utilised to improve predictions derived from lower resolution and one‐dimensional well data

    Fluvio-Marine Sediment Partitioning as a Function of Basin Water Depth

    Get PDF
    Progradational fluvio-deltaic systems tend towards but cannot reach equilibrium, a state in which the longitudinal profile does not change shape and all sediment is bypassed beyond the shoreline. They cannot reach equilibrium because progradation of the shoreline requires aggradation along the longitudinal profile. Therefore progradation provides a negative feedback, unless relative sea level falls at a sufficient rate to cause non-aggradational extension of the longitudinal profile. How closely fluvio-deltaic systems approach equilibrium is dependent on their progradation rate, which is controlled by water depth and downstream allogenic controls, and governs sediment partitioning between the fluvial, deltaic, and marine domains. Here, six analogue models of coastal fluvio-deltaic systems and small prograding shelf margins are examined to better understand the effect of water depth, subsidence, and relative sea-level variations upon longitudinal patterns of sediment partitioning and grain-size distribution that eventually determine large-scale stratigraphic architecture. Fluvio-deltaic systems prograding in relatively deep-water environments are characterized by relatively low progradation rates compared to shallow-water systems. This allows these deeper water systems to approach equilibrium more closely, enabling them to construct less concave and steeper longitudinal profiles that provide low accommodation to fluvial systems. Glacio-eustatic sea-level variations and subsidence modulate the effects of water depth on the longitudinal profile. Systems are closest to equilibrium during falling relative sea level and early lowstand, resulting in efficient sediment transport towards the shoreline at those times. Additionally, the strength of the response to relative sea-level fall differs dependent on water depth. In systems prograding into deep water, relative sea-level fall causes higher sediment bypass rates and generates significantly stronger erosion than in shallow-water systems, which increases the probability of incised-valley formation. Water depth in the receiving basin thus forms a first-order control on the sediment partitioning along the longitudinal profile of fluvio-deltaic systems and the shelf clinoform style. It also forms a control on the availability of sand-grade sediment at the shoreline that can potentially be remobilized and redistributed into deeper marine environments. Key findings are subsequently applied to literature of selected shelf clinoform successions

    The concavity of submarine canyon longitudinal profiles

    Get PDF
    Submarine canyons incise continental shelves and slopes, and are important conduits for the transport of sediment, nutrients, organic carbon and pollutants from continents to oceans. Submarine canyons bear morphological similarities to subaerial valleys, such as their longitudinal (long) profiles. Long profiles record the interaction between erosion and uplift, making their shape, or concavity, a record of environmental and tectonic processes. The processes that govern concavity of subaerial valleys and rivers are well documented on a global scale, however, the processes that control submarine canyon concavity are less well constrained. We address this problem by utilizing existing geomorphological, tectonic and climatic datasets to measure the long profiles and quantify the concavities of 377 modern submarine canyons. Key results show that: (1) the dominant control on submarine canyon concavity is tectonics, with forearcs and tectonically active margins hosting the least concave-up profiles; (2) present-day canyon position affects canyon concavity, with river-associated canyons being less concave than canyons currently dissociated from rivers on forearcs; (3) present-day onshore climate appears to have a more limited impact on submarine canyon concavity when compared to these factors. While significant local variation exists, these results indicate that tectonic processes are the dominant control on the concavity of submarine canyons on a global scale

    Topographic controls on the development of contemporaneous but contrasting basin-floor depositional architectures

    Get PDF
    Sediment-laden gravity-driven-flow deposits on the basin floor are typically considered to form either discrete lobes that stack compensationally, or packages of laterally extensive beds, commonly termed “sheets.” These end-member stacking patterns are documented in several basinfills. However, whether they can coexist in a single basin, or there are intermediate or transitional stacking patterns, is poorly understood. An analysis of depositional architecture and stacking patterns along a 70 km dip-oriented transect in the Upper Broto Turbidite System (Jaca Basin, south-central Pyrenees, Spain), which displays disparate stacking patterns in contemporaneous strata, is presented. Proximal and medial deposits are characterized by discrete packages of clean sandstones with sharp bed tops which exhibit predictable lateral and longitudinal facies changes, and are interpreted as lobes. Distal deposits comprise both relatively clean sandstones and hybrid beds that do not stack to form lobes. Instead, localized relatively thick hybrid beds are inferred to have inhibited the development of lobes. Hybrid beds developed under flows which were deflected and entrained carbonate mud substrate off a carbonate slope that bounded the basin to the south; evidence for this interpretation includes: 1) divergent paleoflow indicators and hummock-like features in individual beds; 2) a decrease in hybrid-bed thickness and abundance away from the lateral confining slope; 3) a carbonate-rich upper division, not seen in more proximal turbidites. The study demonstrates the co-occurrence of different styles of basin-floor stacking patterns in the same stratigraphic interval, and suggests that characterization of deep-water systems as either lobes or sheets is a false dichotomy

    Spatial variability in depositional reservoir quality of deep-water channel-fill and lobe deposits

    Get PDF
    Initial porosity and permeability in deep-water systems are controlled by primary sedimentary texture and mineralogy. Therefore, understanding the sedimentary processes that control changes in primary texture is critical for improved reservoir quality predictions. A well-constrained, exhumed submarine lobe in the Jaca Basin, and a submarine channel-fill element in the AĂ­nsa Basin, northern Spain, were studied to characterize the depositional reservoir quality in axial to marginal/fringe positions. Construction of architectural panels and strategic sampling enabled analysis of the spatial changes in textural properties, and their relationship to reservoir quality distribution. Samples were analyzed in thin-section to establish how depositional processes inferred from outcrop observations affect textural properties. Results show that high-density turbidites are concentrated in lobe- and channel-axis positions and exhibit good depositional reservoir quality. Lobe off-axis deposits contain high- and low-density turbidites and have moderate depositional reservoir quality. Conversely, low-density turbidites dominate lobe fringe and channel-margin positions and have relatively poor depositional reservoir quality. There is a sharp decrease in depositional reservoir quality between the lobe off-axis and lobe fringe due to: 1) an abrupt increase in matrix content; 2) an abrupt decrease in sandstone amalgamation; and 3) a decrease in grain-size. There is an abrupt increase in depositional reservoir quality from channel margin to channel axis corresponding to: 1) an increase in total sandstone thickness and amalgamation; 2) an increase in grain-size, 3) a decrease in matrix content. Rates of change of key properties are up to two orders of magnitude greater between channel-fill sub-environments compared to lobe sub-environments. Spatial variability in properties of discrete architectural elements, and rates of changes, provides input to reservoir models during exploration, appraisal, and development phases of hydrocarbon fields

    Stratigraphic change in flow transformation processes recorded in early post-rift deep-marine intraslope lobe complexes

    Get PDF
    The Early Jurassic Los Molles Formation in the NeuquĂ©n Basin of western Argentina is a rare example of well-exposed syn-rift to post-rift stratigraphy. In the Chachil Graben, the onset of the early post-rift stage is marked by drowning of a carbonate system and the development of two deep-marine intraslope lobe complexes. This field-based study in the Chachil Graben involved field mapping and correlating eleven stratigraphic logs, and petrographic analysis to document how grain size and texture within intraslope lobe sandstones change from the lobe centre to their frontal pinch-out. Eight different bed-scale facies are identified and inferred to be formed by turbulent (turbidites; Type A and B beds), transient turbulent–laminar (transitional flow deposits; Type C, D, E and F beds), laminar gravity flows (debrites; Type G) and post-depositional clastic injections (injectites; Type H beds). Fifteen lobes form two stacked lobe complexes that show stratigraphic evolution from a lower argillaceous sandstone-dominated lobe complex, built by transitional flow deposits, to an upper coarser-grained, sandier lobe complex largely constructed by turbidites. Petrographic analysis quantified sandstone mineralogy, matrix content, grain size and sorting, revealing that both lobe complexes are volcanic arc-sourced. This study proposes that the differences in the character of the two lobe complexes are due to maturation of sediment transport routes through progressive healing of the intraslope relief, with a concomitant decrease in substrate erosion and flow bulking. Also proposed here is a model for intraslope lobe complex development that accounts for the impact of flow-confinement on flow behaviour and transformation induced by the inherited topography. Bed type distribution suggests that high-density flows terminate more abruptly against confining slopes and produce greater depositional variability than lower-density flows. This integrated petrographic, architectural and sedimentary process model provides new insights into how post-rift intraslope lobe systems may act as hydrocarbon reservoirs, aquifers and carbon storage sites

    Interactions between deep-water gravity flows and active salt tectonics

    Get PDF
    Behavior of sediment gravity flows can be influenced by seafloor topography associated with salt structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood. The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and architectures are observed in the Jata basin due to partial confinement. Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging

    Deep-water Tectono-Stratigraphy at a Plate Boundary Constrained by Large N-Detrital Zircon and Micropaleontological Approaches: Peninsular Ranges Forearc, Baja California, Mexico

    Get PDF
    The distribution of sedimentary systems on Earth’s surface is intimately linked to tectonics, therefore, at plate boundaries the stratigraphic archive can unlock the timing and style of tectonism and relative plate motions. Using large-n detrital zircon and micropaleontological analyses, tied to field mapping and data collection, we unravel the timing of strike-slip motion and its influence on the development of a Cretaceous submarine canyon on a long-lived oblique-convergent margin. Structural analysis demonstrates that the canyon bedrock, composed of fluvial rocks (La Bocana Roja Fm., of maximum depositional age (MDA): 93.6±1.1 Ma), underwent both syn- and post-depositional contractional and extensional deformation during the Cenomanian-Turonian in response to dextral strike-slip movement. Relative sea-level rise associated with basin subsidence and hinterland uplift was coincident with incision and fill of a submarine canyon system (Punta Baja Fm., MDA 87.1±1.5 Ma to 84.9±2.0 Ma), which exploited structural lineaments in the bedrock. The canyon was filled by sediment derived from an uplifted magmatic arc during the Coniacian to Santonian, most likely shed from erosional topography associated with plutonic intrusions to the NE. Structural data suggest that oblique dextral strike-slip motion on the Pacific margin controlled the development and location of submarine erosion, and had ended by the earliest Santonian, significantly earlier than previously estimated. Basinward tilting led to uplift, followed by transgression and wave ravinement of the canyon fill, which was then overlain by a shallow-marine to fluvial system. Thus, the canyon was cut, filled, buried, uplifted and rotated basinward, planed off through wave ravinement, and onlapped by shallow-marine to fluvial sediments within an 8 Myr period. Our findings, in part, reconcile contrasting basin evolution models for the Late Mesozoic Pacific margin
    • 

    corecore