60 research outputs found

    String Breaking in Quenched QCD

    Get PDF
    We present preliminary quenched results on a new operator for the investigation of string-breaking within SU(2)-colour QCD. The ground-state of a spatially-separated static-light meson-antimeson pair is a combination of a state with two distinct mesons, expected to dominate for large separations, and a state where the light-quarks have annihilated, which contributes for short distances. The crossover between these two regimes provides a measure of the string-breaking scale length.Comment: LATTICE98(confine), 3 pages, 4 figure

    Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site

    Get PDF
    Cr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste. The soil currently contains 0.8% Cr, shown to be present as Cr(III)(OH)3 in EXAFS analysis. Lab tests confirmed that the reaction of Cr(VI) in site leachate with Fe(II) present in the soil was stoichiometrically correct for a reductive mechanism of Cr accumulation. However, the amount of Fe(II) present in the soil was insufficient to maintain long term Cr(VI) reduction at historic infiltration rates. The soil contains a population of bacteria dominated by a Mangroviflexus-like species, that is closely related to known fermentative bacteria, and a community capable of sustaining Fe(III) reduction in alkaline culture. It is therefore likely that in situ fermentative metabolism supported by organic matter in the soil produces more labile organic substrates (lactate was detected) that support microbial Fe(III) reduction. It is therefore suggested that addition of solid phase organic matter to soils adjacent to COPR may reduce the long term spread of Cr(VI) in the environment

    Modelling the impact of ground planes on aircraft transmission cable impedance

    Get PDF
    With the recent movement in the aircraft industry to have a more electric based secondary power system, new challenges are being uncovered, particularly with the electrical wiring interconnect system. These systems and their insulation are expected to be exposed to significantly higher voltage and frequency stresses. Complicating matters, aircraft power transmission cables are often unshielded, yet are located in close proximity to a ground plane due to the aircraft metallic structure. Electromagnetic interactions between the two in this environment are poorly understood, particularly with respect to how the cable impedance changes for higher frequency signals. Using finite element analysis (FEA), this paper investigates how field stress conditions for high frequency components change as the cable-ground distance changes. A wider discussion of the impact of the mapped behavior on future aircraft electrical wiring design and airframe integration will also be presented. Findings demonstrate that despite cable-ground plane distance being within the standard limits, the cable characteristics can still significantly change, with a 3 cm distance leading to a 15% change in impedance

    Evolution of Cu and Zn speciation in agricultural soil amended by digested sludge over time and repeated crop growth

    Get PDF
    Metals such as Zn and Cu present in sewage sludge applied to agricultural land can accumulate in soils and potentially mobilise into crops. Sequential extractions and X-ray absorption spectroscopy results are presented that show the speciation changes of Cu and Zn sorbed to anaerobic digestion sludge after mixing with soils over three consecutive 6-week cropping cycles, with and without spring barley (Hordeum vulgare). Cu and Zn in digested sewage sludge are primarily in metal sulphide phases formed during anaerobic digestion. When Cu and Zn spiked sludge was mixed with the soil, about 40% of Cu(I)-S phases and all Zn(II)-S phases in the amended sludge were converted to other phases (mainly Cu(I)-O and outer sphere Zn(II)-O phases). Further transformations occurred over time, and with crop growth. After 18 weeks of crop growth, about 60% of Cu added as Cu(I)-S phases was converted to other phases, with an increase in organo-Cu(II) phases. As a result, Cu and Zn extractability in the sludge-amended soil decreased with time and crop growth. Over 18 weeks, the proportions of Cu and Zn in the exchangeable fraction decreased from 36% and 70%, respectively, in freshly amended soil, to 28% and 59% without crop growth, and to 24% and 53% with crop growth. Overall, while sewage sludge application to land will probably increase the overall metal concentrations, metal bioavailability tends to reduce over time. Therefore, safety assessments for sludge application in agriculture should be based on both metal concentrations present and their specific binding strength within the amended soil

    Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk

    Get PDF
    Based on the most recently published data, we definitively estimated that the annual global production of sewage sludge may rise from ~ 53 million tons dry solids currently to ~ 160 million tons if global wastewater were to be treated to a similar level as in the 27 European Union countries/UK. It is widely accepted that the agricultural application is a beneficial way to recycle the abundant organic matter and plant nutrients in sewage sludge. However, land application may need to be limited due to the presence of metals. This work presents a meticulous and systematic review of the sources, concentrations, partitioning, and speciation of metals in sewage sludge in order to determine the impacts of sludge application on metal behavior in soils. It identifies that industrial wastewater, domestic wastewater and urban runoff are main sources of metals in sludge. It shows conventional treatment processes generally result in the partitioning of over 70% of metals from wastewater into primary and secondary sludge. Typically, the order of metal concentrations in sewage sludge is Zn > Cu > Cr ≈ Pb ≈ Ni > Cd. The proportion of these metals that are easily mobilised is highest for Zn and Ni, followed by Cd and Cu, then Pb and Cr. Sludge application to land will lead to elevated metal concentrations, and potentially to short-term changes to the dominant metal species in soils. However, the speciation of sludge-associated metals will change over time due to interactions with plant roots and soil minerals and as organic matter is mineralised by rhizo-microbiome

    Zero temperature string breaking in lattice quantum chromodynamics

    Get PDF
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or "string", which should break in the presence of light quark-antiquark pairs. This expected zero-temperature phenomenon has proven elusive in simulations of lattice QCD. We study mixing between the string state and the two-meson decay channel in QCD with two flavors of dynamical sea quarks. We confirm that mixing is weak and find that it decreases at level crossing. While our study does not show direct effects of internal quark loops, our results, combined with unitarity, give clear confirmation of string breaking.Comment: 20 pages, 7 figures. With small clarifications and two additions to references. Submitted to Phys. Rev.

    Hybrid configuration content of heavy S-wave mesons

    Full text link
    We use the non-relativistic expansion of QCD (NRQCD) on the lattice to study the lowest hybrid configuration contribution to the ground state of heavy S-wave mesons. Using lowest-order lattice NRQCD to create the heavy-quark propagators, we form a basis of ``unperturbed'' S-wave and hybrid states. We then apply the lowest-order coupling of the quark spin and chromomagnetic field at an intermediate time slice to create ``mixed'' correlators between the S-wave and hybrid states. From the resulting amplitudes, we extract the off-diagonal element of our two-state Hamiltonian. Diagonalizing this Hamiltonian gives us the admixture of hybrid configuration within the meson ground state. The present effort represents a continuation of previous work: the analysis has been extended to include lattices of varying spacings, source operators having better overlap with the ground states, and the pseudoscalar (along with the vector) channel. Results are presented for bottomonium (Υ\Upsilon, ηb\eta_b^{}) using three different sets of quenched lattices. We also show results for charmonium (J/ψJ/\psi, ηc\eta_c^{}) from one lattice set, although we note that the non-relativistic approximation is not expected to be very good in this case.Comment: 9 pages, 7 figures, version to appear in Phys Rev

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure

    Searching for Signatures of Cosmic String Wakes in 21cm Redshift Surveys using Minkowski Functionals

    Full text link
    Minkowski Functionals are a powerful tool for analyzing large scale structure, in particular if the distribution of matter is highly non-Gaussian, as it is in models in which cosmic strings contribute to structure formation. Here we apply Minkowski functionals to 21cm maps which arise if structure is seeded by a scaling distribution of cosmic strings embeddded in background fluctuations, and then test for the statistical significance of the cosmic string signals using the Fisher combined probability test. We find that this method allows for detection of cosmic strings with Gμ>5×108G \mu > 5 \times 10^{-8}, which would be improvement over current limits by a factor of about 3.Comment: Matches published versio

    Incorporating uncertainty associated with habitat data in marine reserve design

    Get PDF
    One of the most pervasive forms of uncertainty in data used to make conservation decisions is error associated with mapping of conservation features. Whilst conservation planners should consider uncertainty associated with ecological data to make informed decisions, mapping error is rarely, if ever, accommodated in the planning process. Here, we develop a spatial conservation prioritization approach that accounts for the uncertainty inherent in coral reef habitat maps and apply it in the Kubulau District fisheries management area, Fiji. We use accuracy information describing the probability of occurrence of each habitat type, derived from remote sensing data validated by field surveys, to design a marine reserve network that has a high probability of protecting a fixed percentage (10-90%) of every habitat type. We compare the outcomes of our approach to those of standard reserve design approaches, where habitat-mapping errors are not known or ignored. We show that the locations of priority areas change between the standard and probabilistic approaches, with errors of omission and commission likely to occur if reserve design does not accommodate mapping accuracy. Although consideration of habitat mapping accuracy leads to bigger reserve networks, they are unlikely to miss habitat conservation targets. We explore the trade-off between conservation feature representation and reserve network area, with smaller reserve networks possible if we give up on trying to meet targets for habitats mapped with a low accuracy. The approach can be used with any habitat type at any scale to inform more robust and defensible conservation decisions in marine or terrestrial environments. (C) 2013 Elsevier Ltd. All rights reserved
    corecore