14 research outputs found
A global horizon scan of issues impacting marine and coastal biodiversity conservation
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5â10âyears. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems
A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes
that govern global change and the role of humans in the Earth and climate system. The potential for new
knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic
community came together to âscan the horizonâ to identify the highest priority scientific questions that
researchers should aspire to answer in the next two decades and beyond. Wide consultation was a
fundamental principle for the development of a collective, international view of the most important future
directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific
questions through structured debate, discussion, revision and voting. Questions were clustered into seven
topics: i)Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world,
iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond,
and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require
innovative experimental designs, novel applications of technology, invention of next-generation field and
laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating
procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples.
Sustained year-round access toAntarctica and the Southern Ocean will be essential to increase winter-time
measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the
Earth System, and provide predictions at spatial and temporal resolutions useful for decision making.
A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration,
will be essential as no scientist, programme or nation can realize these aspirations alone.Tinker Foundation, Antarctica New Zealand, The New Zealand
Antarctic Research Institute, the Scientific Committee on
Antarctic Research (SCAR), the Council of Managers of
National Antarctic Programs (COMNAP), the Alfred
Wegner Institut, Helmholtz Zentrum fĂŒr Polar und
Meeresforschung (Germany), and the British Antarctic
Survey (UK).http://journals.cambridge.org/action/displayJournal?jid=ANShb201
Antarctic ascidians under increasing sedimentation: Physiological thresholds and ecosystem hysteresis
Glacier melting sediment inputs affect coastal ecosystems on the Antarctic Peninsula. In Potter Cove (South Shetland Islands, Antarctica), the shift from an âascidian dominatedâ to a âmixedâ assemblage has been linked to sedimentation. However, in recently described newly ice-free areas ascidians became dominant in spite of total suspended particulate matter (TSPM) concentrations, which are the highest measured in Potter Cove. Here, we compared the gut content and energy reserve of three ascidian species at three stations under different TSPM regimes. All analysed species had a higher gut content with lower %OM at these newly areas. A theoretical relationship between the scope for growth for the targeted ascidians and TSPM explained assemblages' recorded change but failed to explain current ascidians distribution. The results may indicate the existence of a TSPM threshold that allows the spatial coexistence of alternative stable states at benthic Potter Cove system
The role of phytoplankton composition and microbial community metabolism in sea-air Delta pCO<sub>2</sub> variation in the Weddell Sea
The Weddell Sea is known to be a CO2 sink due to active biological and physical pumps. Here we study the relationships of phytoplankton biomass and composition and microbial community metabolism, estimated from simulated in situ incubations and from nutrient's difference between surface and subsurface waters, with ?pCO2 in the Weddell Sea, during four austral summers (2002â2005). The ?pCO2 was significantly negative throughout the Weddell Sea in 2002 (-17.2±28.1 ”atm), 2003 (-64.1±31.3 ”atm), 2004 (-54.9±61.8 ”atm) and 2005 (-63.8±60 ”atm), indicating that the Weddell Sea acted as an atmospheric CO2 sink during those summers. The ?pCO2 was significantly lower in the south than in the center or north of the Weddell Sea. This was consistent with the significantly higher Chlorophyll-a concentrations (Chl-a) observed in the south (2.3±1.9 ”g l-1) than in the center (1.3±1.2 ”g l-1) or north (1.4±1.7 ”g l-1). In contrast, waters were mainly undersaturated in O2, due to the upwelling of oxygen poor Warm Deep Water (WDW). The negative relationship between the ?pCO2 and the %O2 saturation suggested that planktonic metabolic activities played a role in these gases dynamics, along with the upwelling of WDW. However, these relationships could not be observed from the results of the incubation experiments, probably because of different temporal scales between gas exchanges in incubation experiments and in situ CO2 and O2 dynamics. The dynamics of CO2 and O2 were solely related to the net community production (NCP) and to the gross primary production (GPP) when only stations with Chl-a > 1 ”g l-1 were considered. A significant relationship was, however, found between ?pCO2 and the primary production until the time of sampling for all stations when estimated from nutrients depletion between surface and subsurface waters. Finally, the distribution of CO2 and O2 were related to the biomass of diatoms and, contrarily to other seas, to the biomass of phytoflagellates
Effects of enhanced temperature and ultraviolet B radiation on a natural plankton community of the Beagle Channel (Southern Argentina): A mesocosm study
Marine planktonic communities can be affected by increased temperatures associated with global climate change, as well as by increased ultraviolet B radiation (UVBR, 280-320 nm) through stratospheric ozone layer thinning. We studied individual and combined effects of increased temperature and UVBR on the plankton community of the Beagle Channel, southern Patagonia, Argentina. Eight 2 m3 mesocosms were exposed to 4 treatments (with 2 replicates) during 10 d: (1) control (natural temperature and UVBR), (2) increased UVBR (simulating a 60% decrease in stratospheric ozone layer thickness), (3) increased temperature (+ 3°C), and (4) simultaneous increased temperature and UVBR (60% decrease in stratospheric ozone; + 3°C). Two distinct situations were observed with regard to phytoplankton biomass: bloom (Days 1-4) and post-bloom (Days 5-9). Significant decreases in micro-sized diatoms (>20 ”m), bacteria, chlorophyll a, and particulate organic carbon concentrations were observed during the post-bloom in the enhanced temperature treatments relative to natural temperature, accompanied by significant increases in nanophytoplankton (10-20 ”m, mainly prymnesiophytes). The decrease in micro-sized diatoms in the high temperature treatment may have been caused by a physiological effect of warming, although we do not have activity measurements to support this hypothesis. Prymnesiophytes benefited from micro-sized diatom reduction in their competition for resources. The bacterial decrease under warming may have been due to a change in the dissolved organic matter release caused by the observed change in phytoplankton composition. Overall, the rise in temperature affected the structure and total biomass of the communities, while no major effect of UVBR was observed on the plankton community
Seasonal and spatial variability of vertical particle flux along the Beagle Channel (Southern Patagonia)
International audienc