1,036 research outputs found

    Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics

    Full text link
    Before we dive into the accessibility stream of nowadays indicatory applications of octonions to computer and other sciences and to quantum physics let us focus for a while on the crucially relevant events for todays revival on interest to nonassociativity. Our reflections keep wandering back to the BrahmaguptaBrahmagupta FibonaccFibonacc two square identity and then via the EulerEuler four square identity up to the DegenDegen GgravesGgraves CayleyCayley eight square identity. These glimpses of history incline and invite us to retell the story on how about one month after quaternions have been carved on the BroughamianBroughamian bridge octonions were discovered by JohnJohn ThomasThomas GgravesGgraves, jurist and mathematician, a friend of WilliamWilliam RowanRowan HamiltonHamilton. As for today we just mention en passant quaternionic and octonionic quantum mechanics, generalization of CauchyCauchy RiemannRiemann equations for octonions and triality principle and G2G_2 group in spinor language in a descriptive way in order not to daunt non specialists. Relation to finite geometries is recalled and the links to the 7stones of seven sphere, seven imaginary octonions units in out of the PlatoPlato cave reality applications are appointed . This way we are welcomed back to primary ideas of HeisenbergHeisenberg, WheelerWheeler and other distinguished fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure

    Hexatic-Herringbone Coupling at the Hexatic Transition in Smectic Liquid Crystals: 4-ϵ\epsilon Renormalization Group Calculations Revisited

    Full text link
    Simple symmetry considerations would suggest that the transition from the smectic-A phase to the long-range bond orientationally ordered hexatic smectic-B phase should belong to the XY universality class. However, a number of experimental studies have constantly reported over the past twenty years "novel" critical behavior with non-XY critical exponents for this transition. Bruinsma and Aeppli argued in Physical Review Letters {\bf 48}, 1625 (1982), using a 4ϵ4-\epsilon renormalization-group calculation, that short-range molecular herringbone correlations coupled to the hexatic ordering drive this transition first order via thermal fluctuations, and that the critical behavior observed in real systems is controlled by a `nearby' tricritical point. We have revisited the model of Bruinsma and Aeppli and present here the results of our study. We have found two nontrivial strongly-coupled herringbone-hexatic fixed points apparently missed by those authors. Yet, those two new nontrivial fixed-points are unstable, and we obtain the same final conclusion as the one reached by Bruinsma and Aeppli, namely that of a fluctuation-driven first order transition. We also discuss the effect of local two-fold distortion of the bond order as a possible missing order parameter in the Hamiltonian.Comment: 1 B/W eps figure included. Submitted to Physical Review E. Contact: [email protected]

    Granular Solid Hydrodynamics

    Get PDF
    Granular elasticity, an elasticity theory useful for calculating static stress distribution in granular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular temperatures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity}, a state-of-the-art engineering model.Comment: 42 pages 3 fi

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Cold sintering of microwave dielectric ceramics and devices

    Get PDF
    Microwave (MW) dielectric ceramics are used in numerous electronic components for modern wireless communication systems, including antennas, resonators, capacitors and filters. However, to date, MW ceramics are manufactured by an energy-intensive, conventional high-temperature (> 1000 °C) sintering technology and thus cannot be co-sintered with low melting point and base electrodes (Ag, Al, etc., < 1000 °C), nor directly integrated with polymers (< 200 °C). Cold sintering is able to densify ceramics at < 200 °C via a combination of external pressure and a transient liquid phase, reducing the energy consumed and facilitating greater integration with dissimilar materials. This review outlines the basics of MW ceramics alongside the mechanism of cold sintering. Recent developments in cold sintering of MW ceramics, composites and devices are described, emphasizing new materials and progress towards component/device fabrication. Future prospects and critical issues for advancing cold-sintered MW materials and devices, such as unclear mechanism, low Q × f values and poor mechanical properties, are discussed

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
    corecore