1,023 research outputs found

    Simulations of Nonthermal Electron Transport in Multidimensional Flows: Synthetic Observations of Radio Galaxies

    Full text link
    We have applied an effective numerical scheme for cosmic-ray transport to 3D MHD simulations of jet flow in radio galaxies (see the companion paper by Jones et al. 1999). The marriage of relativistic particle and 3D magnetic field information allows us to construct a rich set of ``synthetic observations'' of our simulated objects. The information is sufficient to calculate the ``true'' synchrotron emissivity at a given frequency using explicit information about the relativistic electrons. This enables us to produce synchrotron surface-brightness maps, including polarization. Inverse-Compton X-ray surface-brightness maps may also be produced. First results intended to explore the connection between jet dynamics and electron transport in radio lobes are discussed. We infer lobe magnetic field values by comparison of synthetically observed X-ray and synchrotron fluxes, and find these ``inverse-Compton'' fields to be quite consistent with the actual RMS field averaged over the lobe. The simplest minimum energy calculation from the synthetic observations also seems to agree with the actual simulated source properties.Comment: 7 pages, 1 figure; to appear in Life Cycles of Radio Galaxies, ed. J. Biretta et al., New Astronomy Review

    The effect of incorporating the midge resistance (Sm1) gene in wheat

    Get PDF
    Non-Peer ReviewedOrange wheat blossom midge, Sitodiplosis mosellana (Géhin), was first detected in Manitoba in 1901, but now is present in all three prairie provinces of western Canada. In severe infestations, this insect may cause significant yield losses to spring wheat. To mitigate losses, midge-resistant wheat varietal blends, consisting of cultivars carrying the Sm1 midge resistance gene and 10% interspersed midge susceptible refuge, are now available to farmers. The refuge prevents this resistance to be overcome by the insect. To test the field performance of these varietal blends, relative to conventional midge-susceptible cultivars, four varietal blends were grown during four consecutive years, at eight locations in the provinces of Manitoba Saskatchewan and Alberta, in comparison to four conventional, midge-susceptible cultivars. Midge damage was higher in 2007 and 2010, than in 2008 and 2009. In general, the varietal blends, as a group, yielded more grain than the susceptible cultivars, especially when grown in environments with high midge pressure (5.5 - 35% seed damage). In environments with low midge pressure (0 – 2.6% seed damage), the varietal blend average yield advantage was smaller but still significant, indicating that some of the varietal blends had additional superior attributes, in addition to midge resistance. Significant differences in midge damage were observed within the resistant and the susceptible groups of the cultivars tested. Midge resistance did not protect wheat against loss of market grade

    Magnetoroton instabilities and static susceptibilities in higher Landau levels

    Get PDF
    We present analytical results concerning the magneto-roton instability in higher Landau levels evaluated in the single mode approximation. The roton gap appears at a finite wave vector, which is approximately independent of the LL index n, in agreement with numerical calculations in the composite-fermion picture. However, a large maximum in the static susceptibility indicates a charge density modulation with wave vectors q0(n)1/2n+1q_0(n)\sim 1/\sqrt{2n+1}, as expected from Hartree-Fock predictions. We thus obtain a unified description of the leading charge instabilities in all LLs.Comment: 4 pages, 5 figure

    Microscopic Theory of the Reentrant IQHE in the First and Second Excited LLs

    Full text link
    We present a microscopic theory for the recently observed reentrant integral quantum Hall effect in the n=1 and n=2 Landau levels. Our energy investigations indicate an alternating sequence of M-electron-bubble and quantum-liquid ground states in a certain range of the partial filling factor of the n-th level. Whereas the quantum-liquid states display the fractional quantum Hall effect, the bubble phases are insulating, and the Hall resistance is thus quantized at integral values of the total filling factor.Comment: 4 pages, 4 figures; minor corrections include

    Pumped current and voltage for an adiabatic quantum pump

    Full text link
    We consider adiabatic pumping of electrons through a quantum dot. There are two ways to operate the pump: to create a dc current Iˉ{\bar I} or to create a dc voltage Vˉ{\bar V}. We demonstrate that, for very slow pumping, Iˉ{\bar I} and Vˉ{\bar V} are not simply related via the dc conductance GG as Iˉ=VˉG\bar I = \bar V G. For the case of a chaotic quantum dot, we consider the statistical distribution of VˉGIˉ{\bar V} G - {\bar I}. Results are presented for the limiting cases of a dot with single channel and with multichannel point contacts.Comment: 6 pages, 4 figure

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    Dissipation and noise in adiabatic quantum pumps

    Full text link
    We investigate the distribution function, the heat flow and the noise properties of an adiabatic quantum pump for an arbitrary relation of pump frequency ω\omega and temperature. To achieve this we start with the scattering matrix approach for ac-transport. This approach leads to expressions for the quantities of interest in terms of the side bands of particles exiting the pump. The side bands correspond to particles which have gained or lost a modulation quantum ω\hbar \omega. We find that our results for the pump current, the heat flow and the noise can all be expressed in terms of a parametric emissivity matrix. In particular we find that the current cross-correlations of a multiterminal pump are directly related a to a non-diagonal element of the parametric emissivity matrix. The approach allows a description of the quantum statistical correlation properties (noise) of an adiabatic quantum pump

    Accurate calculation of polarization-related quantities in semiconductors

    Full text link
    We demonstrate that polarization-related quantities in semiconductors can be predicted accurately from first-principles calculations using the appropriate approach to the problem, the Berry-phase polarization theory. For III-V nitrides, our test case, we find polarizations, polarization differences between nitride pairs, and piezoelectric constants quite close to their previously established values. Refined data are nevertheless provided for all the relevant quantities.Comment: RevTeX 4 pages, no figure

    Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

    Get PDF
    We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor ν1\nu \gg 1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the CDW state can exist if the Landau level broadening 1/2τ1/2\tau does not exceed the critical value 1/2τc=0.038ωH1/2\tau_{c}=0.038\omega_{H}. Our analysis of weak crystallization corrections to the mean-field results shows that these corrections are of the order of (1/ν)2/31(1/\nu)^{2/3}\ll 1 and therefore can be neglected
    corecore