18 research outputs found

    Targeting the YAP/TAZ pathway in uveal and conjunctival melanoma with verteporfin

    Get PDF
    PURPOSE. The purpose of this study was to determine whether YAP/TAZ activation in uveal melanoma (UM) and the susceptibility of melanoma cell lines to YAP/TAZ inhibition by verteporfin (VP) is related to the tumor's genetic background.METHODS. Characteristics of 144 patients with enucleated UM were analyzed together with mRNA expression levels of YAP/TAZ-related genes (80 patients from the The Cancer Genome Atlas [TCGA] project and 64 patients from Leiden, The Netherlands). VP was administered to cell lines 92.1, OMM1, Mel270, XMP46, and MM28 (UM), CRMM1 and CRMM2 (conjunctival melanoma), and OCM3 (cutaneous melanoma). Viability, growth speed, and expression of YAP1-related proteins were assessed.RESULTS. In TCGA data, high expression of YAP1 and WWTR1 correlated with the presence of monosomy 3 (P = 0.009 and P < 0.001, respectively) and BAP1-loss (P = 0.003 and P = 0.001, respectively) in the primary UM; metastasis development correlated with higher expression of YAP1 (P = 0.05) and WWTR1 (P = 0.003). In Leiden data, downstream transcription factor TEAD4 was increased in cases with M3/BAP1-loss (P = 0.002 and P = 0.006) and related to metastasis (P = 0.004). UM cell lines 92.1, OMM1, and Mel270 (GNAQ/11-mutation, BAP1-positive) and the fast-growing cell line OCM3 (BRAF-mutation) showed decreased proliferation after exposure to VP. Two slow-growing UM cell lines XMP46 and MM28 (GNAQ/11-mutation, BAP1-negative) were not sensitive to VP, and neither were the two conjunctival melanoma cell lines (BRAF/NRAS-mutation).CONCLUSIONS. High risk UM showed an increased expression of YAP/TAZ-related genes. Although most UM cell lines responded in vitro to VP, BAP1-negative and conjunctival melanoma cell lines did not. Not only the mutational background, but also cell growth rate is an important predictor of response to YAP/TAZ inhibition by VP.Ophthalmic researc

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals
    corecore