16 research outputs found

    Lepton asymmetries and the growth of cosmological seed magnetic fields

    Get PDF
    Primordial cosmological hypermagnetic fields polarize the early Universe plasma prior to the electroweak phase transition (EWPT). As a result of the long range parity violating gauge interaction present in the Standard Model their magnitude gets amplified, opening a new, perturbative way, of accounting for the observed intergalactic magnetic fields.Comment: 4 pages, no figures, final published version available online at http://www.iop.org/EJ/abstract/1029-8479/2008/03/06

    Chern-Simons anomaly as polarization effect

    Get PDF
    The parity violating Chern-Simons term in the epoch before the electroweak phase transition can be interpreted as a polarization effect associated to massless right-handed electrons (positrons) in the presence of a large-scale seed hypermagnetic field. We reconfirm the viability of a unified seed field scenario relating the cosmological baryon asymmetry and the origin of the protogalactic large-scale magnetic fields observed in astronomy.Comment: 4 pages, latex, matches published versio

    Black holes as antimatter factories

    Full text link
    We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 102010^{20} g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron--positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back--captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.Comment: 5 pages, no figure. v2: with discussion section not included in the refereed versio

    Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field

    Get PDF
    Approximate analytical formulas for the self-consistent renormalization of P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon strong interaction are derived. The contact spin-flip nucleon-nucleon interaction reduces the constant of the P,T-odd potential 1.5 times for the proton and 1.8 times for the neutron. Renormalization of the P-odd potential is caused by the velocity dependent spin-flip component of the strong interaction. In the standard variant of π+ρ\pi + \rho-exchange, the conventional strength values lead to anomalous enhancement of the P-odd potential. Moreover, the π\pi-meson exchange contribution seems to be large enough to generate an instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure

    Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements

    Full text link
    Manifestations of P-,T-odd weak interaction between nucleons in nucleus are considered. Renormalization of this interaction due to residual strong interaction is studied. Mean squared matrix elements of P-,T-odd weak interaction between compound states are calculated. Correlators between P-,T-odd and P-odd, T-even weak interaction matrix elements between compound states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    corecore