37 research outputs found
Текущее состояние и перспективы развития внешней торговли Объединенных Арабских Эмиратов
The UAE have been diversifying its exports and gradually becomes oil independent country. During past years oil and oil products dominated in the The UAE’s export. Nowadays, significant part of export and re-export is a wide range of goods. The UAE have developed transport infrastructure that makes country especially important as transport and economic hub. The article provides an analysis of the current situation of the United Arab Emirates (UAE) foreign trade.Диверсифицируя свои экспортные поставки, экономика Объединенных Арабских Эмиратов (ОАЭ) постепенно уходит от нефтяной зависимости. Ранее в экспорте страны преобладали нефть и нефтепродукты. В настоящее время значительный удельный вес приходится на экспорт и реэкспорт широкого ассортимента товаров. ОАЭ обладают развитой транспортной инфраструктурой, что превращает эту страну в особенно важный транспортно-экономический узел мирового масштаба. В статье приведен анализ современной ситуации во внешнеторговой деятельности ОАЭ и выявлены перспективы ее развития
BFV-complex and higher homotopy structures
We present a connection between the BFV-complex (abbreviation for
Batalin-Fradkin-Vilkovisky complex) and the so-called strong homotopy Lie
algebroid associated to a coisotropic submanifold of a Poisson manifold. We
prove that the latter structure can be derived from the BFV-complex by means of
homotopy transfer along contractions. Consequently the BFV-complex and the
strong homotopy Lie algebroid structure are quasi-isomorphic and
control the same formal deformation problem.
However there is a gap between the non-formal information encoded in the
BFV-complex and in the strong homotopy Lie algebroid respectively. We prove
that there is a one-to-one correspondence between coisotropic submanifolds
given by graphs of sections and equivalence classes of normalized Maurer-Cartan
elemens of the BFV-complex. This does not hold if one uses the strong homotopy
Lie algebroid instead.Comment: 50 pages, 6 figures; version 4 is heavily revised and extende
Electron spin evolution induced by interaction with nuclei in a quantum dot
We study the decoherence of a single electron spin in an isolated quantum dot
induced by hyperfine interaction with nuclei for times smaller than the nuclear
spin relaxation time. The decay is caused by the spatial variation of the
electron envelope wave function within the dot, leading to a non-uniform
hyperfine coupling . We show that the usual treatment of the problem based
on the Markovian approximation is impossible because the correlation time for
the nuclear magnetic field seen by the electron spin is itself determined by
the flip-flop processes.
The decay of the electron spin correlation function is not exponential but
rather power (inverse logarithm) law-like. For polarized nuclei we find an
exact solution and show that the precession amplitude and the decay behavior
can be tuned by the magnetic field. The decay time is given by ,
where is the number of nuclei inside the dot. The amplitude of precession,
reached as a result of the decay, is finite. We show that there is a striking
difference between the decoherence time for a single dot and the dephasing time
for an ensemble of dots.Comment: Revtex, 11 pages, 5 figure
Spin decay and quantum parallelism
We study the time evolution of a single spin coupled inhomogeneously to a
spin environment. Such a system is realized by a single electron spin bound in
a semiconductor nanostructure and interacting with surrounding nuclear spins.
We find striking dependencies on the type of the initial state of the nuclear
spin system. Simple product states show a profoundly different behavior than
randomly correlated states whose time evolution provides an illustrative
example of quantum parallelism and entanglement in a decoherence phenomenon.Comment: 6 pages, 4 figures included, version to appear in Phys. Rev.
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
Non-ideality of quantum operations with the electron spin of a 31P donor in a Si crystal due to interaction with a nuclear spin system
We examine a 31P donor electron spin in a Si crystal to be used for the
purposes of quantum computation. The interaction with an uncontrolled system of
29Si nuclear spins influences the electron spin dynamics appreciably. The
hyperfine field at the 29Si nuclei positions is non-collinear with the external
magnetic field. Quantum operations with the electron wave function, i.e. using
magnetic field pulses or electrical gates, change the orientation of hyperfine
field and disturb the nuclear spin system. This disturbance produces a
deviation of the electron spin qubit from an ideal state, at a short time scale
in comparison with the nuclear spin diffusion time. For H_ext=9 T, the
estimated error rate is comparable to the threshold value required by the
quantum error correction algorithms. The rate is lower at higher external
magnetic fields.Comment: 11 pages, 2 figure
Localized states in 2D semiconductors doped with magnetic impurities in quantizing magnetic field
A theory of magnetic impurities in a 2D electron gas quantized by a strong
magnetic field is formulated in terms of Friedel-Anderson theory of resonance
impurity scattering. It is shown that this scattering results in an appearance
of bound Landau states with zero angular moment between the Landau subbands.
The resonance scattering is spin selective, and it results in a strong spin
polarization of Landau states, as well as in a noticeable magnetic field
dependence of the factor and the crystal field splitting of the impurity
levels.Comment: 12 pages, 4 figures Submitted to Physical Review B This version is
edited and updated in accordance with recent experimental dat
Low-temperature spin relaxation in n-type GaAs
Low-temperature electron spin relaxation is studied by the optical
orientation method in bulk n-GaAs with donor concentrations from 10^14 cm^{-3}
to 5x10^17 cm^{-3}.
A peculiarity related to the metal-to-insulator transition (MIT) is observed
in the dependence of the spin lifetime on doping near n_D = 2x10^16 cm^{-3}. In
the metallic phase, spin relaxation is governed by the Dyakonov-Perel
mechanism, while in the insulator phase it is due to anisotropic exchange
interaction and hyperfine interactio
Electronic structure of nuclear-spin-polarization-induced quantum dots
We study a system in which electrons in a two-dimensional electron gas are
confined by a nonhomogeneous nuclear spin polarization. The system consists of
a heterostructure that has non-zero nuclei spins. We show that in this system
electrons can be confined into a dot region through a local nuclear spin
polarization. The nuclear-spin-polarization-induced quantum dot has interesting
properties indicating that electron energy levels are time-dependent because of
the nuclear spin relaxation and diffusion processes. Electron confining
potential is a solution of diffusion equation with relaxation. Experimental
investigations of the time-dependence of electron energy levels will result in
more information about nuclear spin interactions in solids
Electron spin as a spectrometer of nuclear spin noise and other fluctuations
This chapter describes the relationship between low frequency noise and
coherence decay of localized spins in semiconductors. Section 2 establishes a
direct relationship between an arbitrary noise spectral function and spin
coherence as measured by a number of pulse spin resonance sequences. Section 3
describes the electron-nuclear spin Hamiltonian, including isotropic and
anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the
effective Hamiltonian for nuclear-nuclear coupling mediated by the electron
spin hyperfine interaction. Section 4 describes a microscopic calculation of
the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops
with quasiparticle broadening included. Section 5 compares our explicit
numerical results to electron spin echo decay experiments for phosphorus doped
silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low
dimensional structures", edited by Marco Fanciulli. To be published by
Springer-Verlag in the TAP series. 35 pages, 9 figure