13,121 research outputs found

    A TIME SERIOUS ANALYSIS OF THE DYNAMIC INFLUENCE OF FEMALE'S MENSTRUAL CYCLE TO SPORT PERFORMANCE

    Get PDF
    This research uses Cross Correlation Function, C.C.F., as a dynamic relationship evaluation model to study the dynamic influences of the menstrual cycle on sport performances. This research takes females with a regular menstrual cycle to be the test subjects. Their basic body temperatures were recorded every day. A Kistler Quattro Jump force plate was used to record continuously for sixty days the parameters of muscular strength, jump performance, and fatigue index during the subjects performance of a counter-movement Jump (CMJ), squat Jump (SJ), and thirty-second continuous bent leg jumps (CJB). The late stage of the follicular phase and the early stage of the luteal phase have a positive influence on sport performance. This also illustrates that sport performance for female athletes will be varied dynamically in accordance with the time of menstrual cycle

    Attentive Neural Architecture Incorporating Song Features For Music Recommendation

    Full text link
    Recommender Systems are an integral part of music sharing platforms. Often the aim of these systems is to increase the time, the user spends on the platform and hence having a high commercial value. The systems which aim at increasing the average time a user spends on the platform often need to recommend songs which the user might want to listen to next at each point in time. This is different from recommendation systems which try to predict the item which might be of interest to the user at some point in the user lifetime but not necessarily in the very near future. Prediction of the next song the user might like requires some kind of modeling of the user interests at the given point of time. Attentive neural networks have been exploiting the sequence in which the items were selected by the user to model the implicit short-term interests of the user for the task of next item prediction, however we feel that the features of the songs occurring in the sequence could also convey some important information about the short-term user interest which only the items cannot. In this direction, we propose a novel attentive neural architecture which in addition to the sequence of items selected by the user, uses the features of these items to better learn the user short-term preferences and recommend the next song to the user.Comment: Accepted as a paper at the 12th ACM Conference on Recommender Systems (RecSys 18

    Orbital-quenching-induced magnetism in Ba_2NaOsO_6

    Full text link
    The double perovskite \bnoo with heptavalent Os (d1d^1) is observed to remain in the ideal cubic structure ({\it i.e.} without orbital ordering) despite single occupation of the t2gt_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion expressed in terms of an Os t2gt_{2g}-based Wannier function picture, spin-orbit coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic OsO6_6 cluster is near a moment-less condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter

    Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits

    Full text link
    Niobium offers the benefit of increased operating temperatures and frequencies for Josephson junctions, which are the core component of superconducting devices. However existing niobium processes are limited by more complicated fabrication methods and higher losses than now-standard aluminum junctions. Combining recent trilayer fabrication advancements, methods to remove lossy dielectrics and modern superconducting qubit design, we revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography. We characterize devices in the microwave domain, measuring coherence times up to 62 μ62~\mus and an average qubit quality factor above 10510^5: much closer to state-of-the-art aluminum-junction devices. We find the higher superconducting gap energy also results in reduced quasiparticle sensitivity above 0.16 0.16~K, where aluminum junction performance deteriorates. Our low-loss junction process is readily applied to standard optical-based foundry processes, opening new avenues for direct integration and scalability, and paves the way for higher-temperature and higher-frequency quantum devices

    Genetic variants in ELOVL2 and HSD17B12 predict melanoma‐specific survival

    Get PDF
    Fatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single‐nucleotide polymorphisms (SNPs) in 149 genes of the fatty‐acid synthesis pathway with cutaneous melanoma disease‐specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome‐wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses’ Health and Health Professionals Follow‐up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51–0.84 and p = 8.34 × 10−4) and 2.29 (1.55–3.39 and p = 3.61 × 10−5), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies

    Local elastic strain and strain tensor measurements of deformed metals using focused, submicrometer Xrays

    Get PDF
    The use of depth resolved, submicrometer X-ray beams for studying deformation microstructures in plastically deformed metals has come a long way over the past 5 years. We can identify phases, measure crystallographic orientations, and measure lattice constants from buried, submicrometer sample volumes throughout extended sample regions within single crystal and polycrystalline samples. In special cases, we can also measure both deviatoric and complete elastic strain tensors with reliable uncertainty estimates for the tensor components. Examples of these capabilities will be described, including nondestructive, full strain tensor measurements from through-Si vias in microelectronics, and strain measurements from commercial Al alloys deformed using equal-channel angular pressing. Expectations for the future will also be discussed

    Surface Magnetic Phase Diagram of Tetragonal Manganites

    Full text link
    To gain insights into the fundamental and characteristic features of the surface of doped manganites, we constructed a general magnetic phase diagram of La1x_{1-x}Srx_{x}MnO3_3 (001) surfaces in the plane spanned by xx and the bulk tetragonal distortion c/ac/a, from the first-principles calculations. We found that the surfaces are quite different from the bulk in the sense that both the (La, Sr)O and MnO2_2 terminated surfaces show strong tendency toward antiferromagnetism (A-type and C-type respectively). The basic physics governing the phase diagram can be understood in terms of the surface orbital polarizations. It is also found that the strong surface segregation of Sr atoms is mostly caused by the electrostatic interaction and will further enhance the tendency to surface antiferromagnetism.Comment: 3 figure
    corecore