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Novelty and Impact: An increased fatty acid synthesis provides metabolic substrates 

for energy storage, membrane building and signaling transduction, which has been 

strongly associated with cancer prognosis. The authors analyzed associations between 

variants in genes in the fatty acid synthesis pathway and cutaneous melanoma-specific 

survival by using datasets from two published genome-wide association studies. They 

found that ELOVL2 rs3734398 and HSD17B12 rs11037684 were significantly 

associated with cutaneous melanoma-specific survival, suggesting their potential roles 

as prognostic factors for melanoma patients.
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Abstract 

Fatty acids play a key role in cellular bioenergetics, membrane biosynthesis and 

intracellular signaling processes and thus may be involved in cancer development and 

progression. In the present study, we comprehensively assessed associations of 

14,522 common single-nucleotide polymorphisms (SNPs) in 149 genes of the fatty-acid 

synthesis pathway with cutaneous melanoma disease-specific survival (CMSS). The 

dataset of 858 cutaneous melanoma (CM) patients from a published genome-wide 

association study (GWAS) by The University of Texas M.D. Anderson Cancer Center 

was used as the discovery dataset, and the identified significant SNPs were validated 

by a dataset of 409 CM patients from another GWAS from the Nurses’ Health and 

Health Professionals Follow-up Studies. We found 40 noteworthy SNPs associated with 

CMSS in both discovery and validation datasets after multiple comparison correction by 

the false positive report probability method, because more than 85% of the SNPs were 

imputed. By performing functional prediction, linkage disequilibrium analysis, and 

stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 

rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic 

hazards ratio of 0.66 (95% confidence interval=0.51-0.84 and P=8.34×10-4) and 2.29 

(1.55-3.39 and P=3.61×10-5), respectively. Finally, the ELOVL2 rs3734398 variant CC 
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genotype was found to be associated with a significantly increased mRNA expression 

level. These SNPs may be potential markers for CM prognosis, if validated by additional 

larger and mechanistic studies.
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Introduction 

Cutaneous melanoma (CM) has the highest mortality rate among all skin cancers, 

ranking the fifth most common cancer among males and the sixth among females in the 

United States. In 2018, an estimated 91,270 new CM cases will be diagnosed in the 

United States (in addition to 87,290 in situ cases), and the CM incidence rate continues 

to rise 1. Although many CM patients are considered having an in situ or localized 

disease, these low-risk cases also comprise a substantial fraction of the overall burden 

of lethal CM 2. CM patients can be classified to having a relative low, average or high risk 

of recurrence and death according to the American Joint Committee on Cancer; however 

an estimated 10-20% of the cases will develop an outcome different from the predicted 

one 3. Therefore, the identification of alternative prognosis biomarkers is needed. 

 CM is a disorder of uncontrolled melanocytic cell growth and proliferation, in which 

cellular metabolism is programmed 4. For example, high levels of carbon flux through 

aerobic glycolysis accumulate metabolic intermediates as sources of cellular building 

blocks, and an increased fatty acid synthesis provides metabolic substrates for energy 

storage, membrane building and signaling transduction, which have been shown to be 

strongly associated with cancer prognosis 5. Furthermore, lipogenic enzymes in the fatty 

acid synthesis, such as the ATP citrate lyase 6, fatty acid synthase (FASN) 7 and 
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stearoyl-CoA desaturase 8, have emerged as potential therapeutic targets in cancer 

treatment. Chemical inhibition or genetic knock-down of these key enzymes lead to a 

reduced proliferation and survival of cancer cells in xenograft tumor models. Interestingly, 

one study found that inhibition of fatty acid desaturation also increased the 

chemosensitivity of cancer cells that had an induced apoptosis by the mitochondrial 

pathway 9, suggesting an important role of the fatty acid metabolism in cancer cell 

survival and drug resistance. In melanocytes and melanoma cells, fatty acids regulate 

the degradation of tyrosinase, a critical enzyme associated with melanin biosynthesis 10. 

It has also been reported that alterations in the fatty acid synthesis in melanoma cells 

helped the cells evade apoptosis and sustain survival after ultraviolet A exposure 11. 

Given the importance of fatty acid synthesis in cancer development and progression, 

we aimed to identify novel genetic variants in the fatty acid synthesis pathway genes in 

their association with survival of CM patients by using two published genome-wide 

association study (GWAS) datasets, which may provide a new clue to novel cancer 

therapies with interruption of the fatty acid metabolism. 

 

Materials and Methods 

Study populations 
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In the present study, we used 858 CM patients from The University of Texas MD 

Anderson Cancer Center (MDACC) study as a discovery dataset and 409 CM patients 

from the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Studies 

(HPFS) as a validation dataset, and the published GWAS data were available for both 

discovery and validation studies. Detailed descriptions of subject selection and data 

collection for both discovery and validation studies were described elsewhere 12, 13. The 

approval to perform the present study was granted by Institutional Review Boards at 

both MD Anderson and Brigham and Women’s Hospital with a written informed consent 

obtained from all participants. 

 

Gene selection and single-nucleotide polymorphism (SNP) genotyping 

We selected 149 fatty acid synthesis pathway genes that are located on the autosomes 

according to the databases of the Molecular Signatures Database v6.2 of Gene Set 

Enrichment Analysis website (Table S1). In the MDACC dataset, genomic DNA 

extracted from the whole blood was genotyped by the Illumina 

HumanOmni-Quad_v1_0_B array using the National Center for Biotechnology 

Information Database of Genotypes and Phenotypes (accession: phs000187.v1.p1). 

Genome-wide imputation was performed by using the MACH software based on the 

1000 Genomes Project phase I v2 CEU. In brief, the typed or imputed common SNPs 

(with minor allele frequency ≥ 0.05, genotyping success rate ≥ 95%, and 
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Hardy-Weinberg equilibrium P value ≥ 0.00001, and from imputation for those SNPs 

with r2 ≥ 0.8) within genes in the fatty acid synthesis pathway or their ± 2 kilobase 

flanking regions were selected for association analysis. Meanwhile, in the NHS/HPFS 

study, genotyping was performed using the Illumina HumanHap550 array, 

HumanHap610 array and Affymetrix 6.0 array. Imputation analysis was based on 

genotyped SNPs and haplotype information from the 1000 Genomes Phase III data 

using the program MACH. We selected the SNPs by the same standard used in the 

discovery dataset. 

 

Statistical methods 

The cutaneous melanoma-specific survival (CMSS) time was calculated from the time 

of diagnosis until death from CM. Statically associations between SNPs and CMSS 

were assessed by multivariable Cox proportional hazards regression analyses using 

the GenABEL package of R software with adjustment for age, sex, Breslow thickness, 

regional/distant metastasis, ulceration and mitotic rate in the MDACC dataset 14. In the 

validation analysis from the NHS/HPFS study, only age and sex were available for 

adjustment. 

We used the false positive report probability (FPRP) method to correct for multiple 

testing, because more than 85% of SNPs included in the present study were imputed 

and thus in linkage disequilibrium (LD) with other genotyped SNPs. Three factors 
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determine the magnitude of FPRP: the level of P values, the prior probability of a true 

association of the tested genetic variant with a disease, and the statistical power to 

detect the odds or hazards ratios of the alternative hypothesis at the given condition 15. 

Only the significant results with an FPRP value < 0.2 in both discovery and validation 

datasets were considered noteworthy. We also used a prior probability of 0.1 to detect a 

hazards ratio (HR) of 2.0 for an association with variant genotypes or minor alleles of 

the SNPs with P < 0.05. 

To evaluate the effects of genetic variants on the cumulative probability of CMSS, 

Kaplan-Meier survival curves and log-rank tests were performed. The establishment of 

the number of risk genotypes was used to estimate the joint effect of the multi-genetic 

variants. In the present study, we calculated a genotype score from the number of risk 

genotypes and performed multivariable Cox regression models to assess the 

association between the genotype score and CMSS. To assess the SNPs of interest 

and cumulative incidence of CM-specific death, where death from other causes other 

than CM was modeled as a competing event. A Fine-Gray competing risk regression 

model was performed for univariate and multivariable regression analyses, which 

calculates subdistribution HR from Cox proportional hazards model. For the 

meta-analysis, fixed-effects models were used, because no heterogeneity was found 

between two studies (Q test P > 0.100 and I2 < 25.0%). We used receiver operating 

characteristic (ROC) curve to illustrate the ability of area under the curve (AUC) in 
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predicting CMSS, which were calculated with timeROC package of R software to 

assess the accuracy of genetic variants’ continuing effect over the time. 

Additionally, we performed linear regression analysis for trends in the association 

between selected SNP and the mRNA expression levels of each corresponding gene 

as obtained from RNAseq data from the 1000 Genomes Project 16, 17 (including 373 

samples from European descendants) and the GTEx Portal 18 

(http://www.gtexportal.org/home/). The rest analyses were performed using SAS 

software Version 9.4 (SAS Institute, Cary, NC), if not specified otherwise. 

 

Results 

Subject Characteristics 

In the MDACC dataset, there were slightly more male patients (496, 57.8%) than female 

patients with an age range between 17 and 94 years at diagnosis (a median age of 53 

years); 56.8% of these cases were older than 50 years; and 82.6% (709) had been 

classified as no regional/distant metastasis. Univariate Cox regression analysis 

suggested that age, sex, stage, Breslow thickness, ulceration and mitotic rate were 

significantly associated with CMSS. For the NHS/HPFS study, the dataset only had age, 

sex, survival outcome and genotype data with an age range between 34 and 87 years at 

diagnosis (a median age of 60 years), and the majority of the cases were over 50 years 
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old (337, 82.4%) with more female patients (271, 66.3%). The patients from the MDACC 

dataset had a relatively shorter median follow-up time of 81.1 months with a range 

between 4.7 to 175.3 months, compared to 179.0 months with a range between 5.0 to 

453.0 months for NHS/HPFS patients (Table S2). 

 

Associations between SNPs in the fatty acid synthesis pathway genes and CMSS 

Figure 1 provides a flowchart of study design to illustrate the present study. To assess 

the associations of 2,161 genotyped and 12,361 imputed SNPs of the fatty acid 

synthesis pathway genes with CMSS, we performed the single locus analysis by using 

multivariate Cox proportional hazards regression in the MDACC dataset with 

adjustments for age, sex, regional/distant metastasis, Breslow thickness, ulceration, 

and mitotic rate. A Manhattan plot showing the associations between 14,522 SNPs and 

CMSS is presented in Figure S1. As a result, 1,042 SNPs were significantly associated 

with CMSS at P < 0.05 in an additive genetic model, of which 538 SNPs were still 

considered noteworthy after the multiple test correction by FPRP, which took into 

account of the fact that the vast majority of the SNPs under investigation were imputed 

with a LD approach. Among the 538 SNPs, 40 were validated in the NHS/HPFS dataset 

and remained significantly associated with CMSS at P < 0.05 after the correction by an 
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FPRP < 0.2. On the basis of the in silico functional prediction by using SNPinfo 

(http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html) and RegulomeDB 

(http://www.regulomedb.org/), 13 of these 40 SNPs were predicted to be putatively 

functional, including two SNPs in ELOVL2 (the elongation of very long-chain fatty acids 

2 gene) and eleven SNPs in HSD17B12 (the hydroxysteroid 17-beta dehydrogenase 12 

gene) (Table S3). In the subsequent meta-analysis of the two datasets, the 13 SNPs in 

ELOVL2 and HSD17B12 remained significant in associations with CMSS (Table 1) 

without heterogeneity between the two datasets (Phet > 0.05 for both). 

 

Genetic variants in the fatty acid synthesis pathway genes as independent death 

predictors 

We further performed LD analysis of the 13 SNPs in ELOVL2 and HSD17B12 and 

found that two SNPs of ELOVL2 were in a high LD and that 11 SNPs of HSD17B12 

were also a high LD (Figure S2). In consideration of P values, LD and predicted 

functions, we selected ELOVL2 rs3734398 (genotyped) and HSD17B12 rs11037684 

(genotyped) as the independent tagSNPs for further analysis. 

 An initial stepwise Cox regression analyses of selected clinical variables from the 

MDACC dataset suggested these two SNPs were independent predictors of CMSS 
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(Table S4). In multivariate Cox regression analysis using an additive model, we 

evaluated the effects of these two significant SNPs on death risk with adjustment for 

clinicopathological covariates (i.e., age, sex, Breslow thickness, regional/distant 

metastasis, ulceration of tumor, and tumor cell mitotic rate) in the MDACC dataset but 

only for age and sex in the NHS/HPFS dataset. In the MDACC study, we observed a 

statistically significant protective effect of the ELOVL2 rs3734398 C allele (Ptrend = 0.027) 

but a risk effect of the HSD17B12 rs11037684 G allele (Ptrend = 0.007) on CM-specific 

survival. Similar results were observed for the ELOVL2 rs3734398 C allele in the 

NHS/HPFS dataset (Ptrend = 0.005) and the combined dataset of both MDACC and 

NHS/HPFS (Ptrend = 0.003). Similarly, the risk effect of the HSD17B12 rs11037684 G 

allele was observed in the NHS/HPFS dataset (Ptrend = 0.002) and the combined 

dataset of both MDACC and NHS/HPFS (Ptrend = 0.002) (Table 2). To further visualize 

the HR effects, we used Kaplan-Meier survival curves for the associations between 

CMSS and risk genotypes of ELOVL2 rs3734398 and HSD17B12 rs11037684 in the 

combined dataset of both MDACC and NHS/HPFS (Figure 2a and 2b). 

In the Fine-Gray competing-risks regression model, the cumulative incidence of an 

event of interest was calculated in the presence of competing risks (death not caused 

by CM). During the follow-up time, 38 and 91 patients died of causes other than CM in 
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the MDACC and NHS/HPFS datasets, respectively. In multivariate competing risks 

regression models, ELOVL2 rs3734398 was a statistically significant predictor of CMSS, 

after accounting for the postdiagnosis mortality in both datasets (with subdistribution HR 

of 0.72 in the MDACC dataset and 0.53 in the NHS/HPFS dataset, respectively); 

similarly, HSD17B12 rs11037684 was also a significant predictor in the MDACC dataset 

(subdistribution HR = 1.93 and P = 0.014) and NHS/HPFS dataset (subdistribution HR 

= 2.56 and P = 0.002). In the subsequent meta-analyses, for both rs3734398 and 

rs11037684, the direction, magnitude, and significance of subdistribution HR of CMSS 

were consistent with the cause-specific HR (Table S5). Furthermore, regional 

association plots for the MDACC dataset were generated for ELOVL2 and HSD17B12, 

including the 200-kb regions flanking the neighborhoods of these two genes (Figure 

S3). 

 

Survival of CM patients with combined risk genotypes 

To better estimate the joint effect of the two tagSNPs on risk of death, we combined the 

risk genotypes (those associated with an increased death risk) of ELOVL2 rs3734398 TT 

and HSD17B12 rs11037684 AG+GG into one variable as a genetic score. We then 

categorized all the patients into three groups with 0, 1 and 2 risk genotype. As illustrated 
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in Table 2, we observed a risk-genotype dose-response effect; that is, the effect on 

CMSS increased as the number of risk genotypes increased in the MDACC dataset 

(Ptrend = 0.007), the NHS/HPFS dataset (Ptrend < 0.0001) and the combined dataset of 

both MDACC and NHS/HPFS (Ptrend < 0.0001) after adjustments for covariates where 

appropriate. We next dichotomized all patients into the 0 risk genotype group and the 1-2 

risk genotypes group and found that, compared with the 0 risk genotype group, the 1-2 

risk genotypes group had a higher CM-death risk in the MDACC dataset (adjusted 

hazards ratio [HRadj] = 1.66, 95% CI = 1.09-2.53 and P = 0.019), the NHS/HPFS dataset 

(2.82, 1.56-5.10 and 0.0006) and the combined dataset of both MDACC and NHS/HPFS 

( 1.79, 1.29-2.50 and 0.0005). Figure 2c shows the Kaplan-Meier curves for the 

associations between risk genotypes and CMSS. 

 

Stratified analyses for the effect of combined risk genotypes on CMSS 

We further conducted stratified analyses to investigate whether the joint effect of risk 

genotypes on CMSS was modified by clinicalpathologic variables including age, sex, 

distant/regional metastasis, Breslow thickness, ulceration and mitotic rate in the MDACC 

dataset and age and sex in the NHS/HPFS dataset. As a result, patients with the 1-2 risk 

genotypes group, compared with the 0 risk genotype group, showed a substantially 
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increased risk of CM-associated death in the presence of clinical variables, which were 

more evident in the subgroups of age ≤ 50, male subjects and those with tumor cell 

mitotic rate of ≤ 1/mm2 in the MDACC dataset and the subgroups age > 50 and female 

subjects in the NHS/HPFS dataset. However, no significant interaction was found among 

all the subgroups (Table S6). 

 

ROC and AUC estimation for CMSS prediction 

To assess the ability of risk genotypes to predict CMSS, we compared the model with 

ROC for clinical variables where appropriate to that of ROC for both clinical variables 

and risk genotypes. Consistently, the AUC of the five-year CMSS improved prediction 

performance in the MDACC dataset, the NHS/HPFS dataset and the combined dataset 

of both MDACC and NHS/HPFS with the addition of risk genotypes to the model 

(Supplementary Figure S4a, 4c and 4e). Only the AUC of the five-year CMSS in the 

NHS/HPFS dataset significantly increased from 54.05% to 73.51% (P = 0.022) with the 

addition of risk genotypes to the model. In addition, the time-dependent AUC curves 

were also provided to assess the ability of risk genotypes to predict CMSS through the 

entire follow-up period in the above-mentioned three datasets (Supplementary Figure 

S4b, 4d and 4f). 
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Genotype-phenotype correlation analyses 

We further evaluated the correlations between SNPs and their corresponding mRNA 

expression levels using publically available RNA-seq data of 373 lymphoblastoid cell 

lines from the 1000 Genomes Project 17, 18. Notably, the rs3734398 C allele was 

significantly correlated with mRNA expression levels of ELOVL2 in an additive model (P 

= 0.024, Figure 2d). We also performed expression quantitative trait loci (eQTL) 

analysis using genomic data from the Genotype-Tissue Expression (GTEx) Project 

(http://www.gtexportal.org/home), which includes ELOVL2 rs3734398 in transformed 

fibroblasts from 300 donors. We found that rs3734398 C allele was associated with a 

significantly increased ELOVL2 mRNA expression level (P = 7.3 × 10-7) in an additive 

genetic model (Figure 2e), which is consistent with our initial findings. However, there 

was no significant correlation between rs11037684 genotypes and HSD17B12 mRNA 

expression levels (P = 0.911, 0.988 and 0.547 for additive, dominant and recessive 

models, respectively) (Figure S5) in the 1000 Genomes Project nor in the GTEx. No 

significant associations between selected SNPs and their corresponding mRNA 

expression levels were observed in the normal skin tissues from the sun exposed lower 

leg and the unexposed suprapubic (Table S7) from the GTEx. Using experimental data 
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from the ENCODE Project (Figure S6), we found the two SNPs (i.e., rs3734398 and 

rs11037684) to be located in a DNase I hypersensitive site, where the DNase 

hypersensitivity and histone modification H3K27 acetylation indicated some signals for 

active enhancer and promoter functions. The evidence from the DNase cluster and 

transcription factor CHIP-seq data suggests that rs3734398 is located on the SPI1 motif 

and that rs11037684 is located on the RP58 motif as indicated by the position weight 

matrix. 

 

Discussion 

In the present study, we found that genetic variants ELOVL2 rs3734398 and HSD17B12 

rs11037684 were likely to independently or jointly modulate the survival of CM patients. 

We also observed a dose-response effect of their combined risk-genotypes on CMSS. 

Moreover, the rs3734398 C allele was correlated with an increase in ELOVL2 mRNA 

expression level in lymphoblastoid cell lines derived from 373 European descendants 

from the 1000 Genomes Project. These findings are biologically plausible, because the 

fatty acid synthesis pathway contributes to membrane biosynthesis, energy storage and 

the regulation of oncogenic signaling. 

 A deregulated fatty acid synthesis can affect drug resistance and cancer risk, 
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prognosis and recurrence 19. For example, several studies have shown that 

overexpression of FASN is associated with a poor prognosis and drug resistance in 

breast cancer and gastrointestinal stromal tumors as well as associated with a higher 

risk of recurrence of human cancers, including cancers of the breast, prostate and 

bladder 20 21. Furthermore, blocking the fatty acid synthesis overcomes tumor regrowth 

and metastasis after withdrawal of the antiangiogenic therapy in breast and colon 

cancer cells 22. When restricted to hepatocellular carcinoma patients receiving surgery 

treatment, genetic variants of FASN could predict recurrence risk 23. Importantly, 

evidence also exists that fatty acid synthesis inhibitors may induce apoptosis and also 

reduce metastases and angiogenesis in melanoma cells 24. Consistently, CM patients 

with high expression levels of fatty-acid metabolic signature genes resulted in a 

significant decrease in survival rates of CM patients 25, supporting a role of the fatty acid 

metabolism in CM progression. 

 We report here some striking significant associations of CMSS with genetic variants 

in ELOVL2 and HSD17B12. CM patients with an increasing number of risk variant 

genotypes had a worse survival. Importantly, the risk effect was consistent across 

different analyses and the majority of subgroup comparisons, suggesting a strong 

association of a genetic effect on CM survival. We believe that these results are likely 
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biologically plausible, since the genotype-phenotype correlation demonstrates that 

ELOVL2 expression levels may be modulated by rs3734398 T>C change, although 

additional investigation is needed to unravel molecular mechanisms underlying the 

observed correlation. 

 ELOVL2 is located on chromosome 6p24.2, encoding for a transmembrane protein 

that controls the elongation of polyunsaturated fatty acids (PUFA), which modulates 

energy production, and influences inflammation and cell membrane integrity 26. For 

patients with breast cancer, ELOVL2 can hormonally regulate the PUFA synthesis and 

thus may have a potential implication on the endocrine therapy 27. Deletion of ELOVL2 

in a mouse model leads to a decrease in Foxp3+ regulatory T cells, suggesting its 

potential role in the adaptive immunity 28. GWAS have identified ELOVL2 variants to be 

associated with serum metabolic profile 29, aging process and DNA methylation 30. 

Recently, ELOVL2 rs3734398 has been reported to be significantly associated with 

plasma eicosapentaenoic and docosahexaenoic acid proportions after fish oil 

supplement, which provides evidence on personalized dietary recommendations for 

reducing cardiovascular disease risk based on the genotype of this SNP 31. To date, 

ELOVL2 has not been reported to be associated with CM progression and prognosis. In 

light of our results and in the consideration that PUFAs are involved in crucial biological 
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functions and that rs3734398 may regulate ELOVL2 expression, it is possible that 

genetic variants in ELOVL2 may be utilized in managing CM progression and prognosis 

in the future precision medicine, once validated by additional studies. 

 HSD17B12, located on chromosome 11p11.2, is a multifunctional isozyme, 

catalyzing the elongation of long chain fatty acids, particularly the conversion of palmitic 

to arachidonic acid 32. The latter is the precursor of prostaglandin E2, an important 

mediator of inflammation, linking HSD17B12 expression levels to inflammation and 

cancer 33. HSD17B12 expression levels were also shown to be associated with 

adipocyte differentiation 34 as well as embryogenesis and differentiation 35. HSD17B12 

also is believed to act as an oncogene involved in multiple cancers. For example, 

immunohistochemical analyses indicated that cytoplasmic staining of HSD17B12 was 

enhanced along with the severity of ovarian cancer, whereas HSD17B12 weak 

expression was correlated to a better overall survival and a longer time to first tumor 

recurrence 36. For breast cancer cases, HSD17B12 expression was significantly higher 

in tumor tissues than in normal tissues 37, leading to an increased risk of recurrence and 

adverse clinical outcome 38. Furthermore, HSD17B12 variants were found to be 

significantly associated with risk of biochemical recurrence in patients with localized 

prostate cancer in one study 39 and with less aggressive form of neuroblastoma in 
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another study 40. 

 The present study has some strengths and limitations. A major strength of the 

present study is the comprehensive analysis of associations between SNPs in all genes 

involved in the fatty acid synthesis pathway and survival of CM as well as the use of two 

published GWAS datasets with a relative long median follow-up time and strict quality 

control procedures. The effects of risk genotypes of the two novel SNPs on CMSS were 

consistent in two different GWAS datasets. However, a potential weakness was the lack 

of information about different treatment, which should have been adjusted for the 

possible effect on CM patients’ outcomes. The samples of the two GWAS studies were 

not large enough to allow for the false discovery rate test, a more desired multiple test 

correction method, although the FPRP was more appropriate for highly correlated 

SNPs under investigations as a result of imputation in the present study. Finally, further 

functional investigation should be conducted to provide mechanistic insights into the 

mechanisms underlying the CM-death association with these two novel SNPs. 
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Figure 1. Study workflow for SNPs in the fatty acid synthesis pathway genes. 

Abbreviations: AUC, area under curve; CMSS, cutaneous melanoma-specific survival; 

ELOVL2, elongation of very long-chain fatty acids 2; FPRP, false positive report 

probability; GWAS, genome wide association study; HSD17B12, hydroxysteroid 

dehydrogenase type 12; HWE, Hardy Weinberg equilibrium; MAF, minor allele 

frequency; MDACC, The University of Texas MD Anderson Cancer Center; NHS, the 

Nurses’ Health Study; HPFS, the Health Professionals Follow-up Study; ROC, receiver 

operating characteristic; SNP, single nucleotide polymorphism. 

 

Figure 2. Two independent SNPs predict cutaneous melanoma survival and eQTL 

analysis for ELOVL2 rs3734398. Kaplan-Meier survival curves of CMSS stratified by 

ELOVL2 rs3734398 (a) and HSD17B12 rs11037684 (b), assuming a dominant model in 

the combined dataset of both MDACC and NHS/HPFS. (c) Kaplan-Meier survival 

curves of the combined risk genotypes on CMSS: dichotomized 0 risk genotype group 

and 1-2 risk genotypes group in the combined dataset of both MDACC and NHS/HPFS. 

The table below the Kaplan-Meier curves illustrates the numbers at risk for each time 

point. (d) The eQTL analysis for ELOVL2 rs3734398 in blood cells in the 1,000 

Genomes Project in an additive model. (e) The eQTL analysis from the 
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Genotype-Tissue Expression project for ELOVL2 rs3734398 in an additive genetic 

model. Abbreviations: CM, cutaneous melanoma; CMSS, cutaneous 

melanoma-specific survival; ELOVL2, elongation of very long-chain fatty acids 2; eQTL, 

expression quantitative trait loci; HSD17B12, hydroxysteroid dehydrogenase type 12; 

MDACC, The University of Texas MD Anderson Cancer Center; NHS, the Nurses’ 

Health Study; HPFS, the Health Professionals Follow-up Study; SNP, single-nucleotide 

polymorphism. 
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 Table 1. Meta-analysis of thirteen validated SNPs in the fatty acid synthesis pathway using two published melanoma GWAS datasets 

SNP Allele1 Gene Position 
MDACC (n=858)  

 
NHS/HPFS (n=409)  

 
Meta-analysis (n=1267) 

EAF HR (95% CI)2 P2 FPRP3 
 

EAF HR (95% CI)4 P4 FPRP3 
 

Phet I2 HR (95% CI)5 P5 

rs37343986 T>C ELOVL2 6p24.2 0.41 0.72 (0.54-0.96) 0.027 0.195 
 

0.42 0.53 (0.33-0.83) 0.005 0.076 
 

0.265 19.44 0.66 (0.51-0.84) 8.34×10-4 

rs37987137 G>C ELOVL2 6p24.2 0.43 0.68 (0.51-0.91) 0.019 0.076  0.42 0.52 (0.33-0.82) 0.005 0.067  0.326 0 0.63 (0.50-0.80) 1.74×10-4 

rs110376836 A>C HSD17B12  11p11.2 0.06 2.10 (1.22-3.61) 0.007 0.132  0.06 2.52 (1.42-4.46) 0.002 0.060  0.650 0 2.29 (1.55-3.39) 3.61×10-5 

rs110376846 A>G HSD17B12  11p11.2 0.06 2.10 (1.22-3.61) 0.007 0.132  0.06 2.52 (1.42-4.46) 0.002 0.060  0.650 0 2.29 (1.55-3.39) 3.61×10-5 

rs618838087 A>G HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.23 (1.21-4.10) 0.010 0.198  0.983 0 2.24 (1.49-3.36) 9.42×10-5 

rs618838097 A>G HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.40 (1.33-4.33) 0.004 0.108  0.875 0 2.32 (1.55-3.45) 3.68×10-5 

rs618838117 T>C HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.40 (1.33-4.33) 0.004 0.108  0.875 0 2.32 (1.55-3.45) 3.68×10-5 

rs618838447 T>C HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.34 (1.30-4.23) 0.005 0.125  0.924 0 2.29 (1.54-3.42) 4.77×10-5 

rs618838457 G>T HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.34 (1.30-4.23) 0.005 0.125  0.924 0 2.29 (1.54-3.42) 4.77×10-5 

rs175145537 T>A HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.34 (1.30-4.23) 0.005 0.125  0.924 0 2.29 (1.54-3.42) 4.77×10-5 

rs175991147 C>T HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.34 (1.30-4.23) 0.005 0.125  0.924 0 2.29 (1.54-3.42) 4.77×10-5 

rs175986877 A>C HSD17B12  11p11.2 0.06 2.25 (1.31-3.86) 0.003 0.084  0.06 2.23 (1.21-4.10) 0.010 0.198  0.983 0 2.24 (1.49-3.36) 9.42×10-5 

rs777394527 T>A HSD17B12  11p11.2 0.06 2.22 (1.29-3.82) 0.004 0.091  0.06 2.40 (1.33-4.33) 0.004 0.108  0.849 0 2.30 (1.54-3.43) 4.34×10-5 

Abbreviations: SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; MDACC, The University of Texas MD Anderson Cancer Center; NHS/HPFS, the Nurses’ Health Study and 
Health Professionals Follow-up Study; EAF, effect allele frequency; HR, hazards ratio; CI, confidence interval; FPRP, false positive report probability; Phet, P value for heterogeneity by Cochrane’s Q test; 
ELOVL2, elongation of very long-chain fatty acids 2; HSD17B12, hydroxysteroid dehydrogenase type 12; 
1Reference allele/effect allele; 
2Adjusted for age, sex, Breslow thickness, distant/regional metastasis, ulceration and mitotic rate in the additive model; 
3FPRP was used for multiple test correction because 85.1% of the analyzed SNPs in MDACC dataset were imputed with a high level of linkage disequilibrium; 

4Adjusted for age and sex in an additive genetic model; 
5Meta-analysis in the fix-effect model; 
6Genotyped SNPs in the MDACC dataset; 
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7Imputed SNPs in the MDACC dataset. 
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 Table 2. Associations between two independent SNPs in the fatty acid synthesis pathway genes and CMSS of patients in the MDACC dataset, the NHS/HPFS dataset and 
the combined dataset of both MDACC and NHS/HPFS 

 MDACC (n=858)  NHS/HPFS (n=409)  MDACC + NHS/HPFS (n=1267)  

Genotype Frequency Multivariate analysis1  Frequency Multivariate analysis2  Frequency Multivariate analysis3 

  All Death (%) HR (95% CI) P   All Death (%) HR (95% CI) P  All Death (%) HR (95% CI) P 

ELOVL2 rs3734398 T>C                   

TT 310 40 (12.90) 1.00  
 137 25 (18.25) 1.00   447   65 (14.54) 1.00  

TC 385 42 (10.91) 0.86 (0.55-1.35) 0.515  201 19 (9.45) 0.49 (0.27-0.89) 0.019  586   61 (10.41) 0.70 (0.50-1.00)   0.049 

CC 163 13 (7.98) 0.45 (0.23-0.89) 0.021  71   4 (5.63) 0.31 (0.11-0.90) 0.030  234   17 (7.26) 0.48 (0.28-0.82)   0.007 

Trend test   0.027    
 0.005  

  
   0.003 

TC+CC 548 55 (10.04) 0.72 (0.47-1.10) 0.128  272 23 (8.46) 0.44 (0.25-0.78) 0.005  820   78 (9.51) 0.64 (0.46-0.89)   0.007 

HSD17B12 rs11037684 A>G           
AA 757 79 (10.44) 1.00  

 360 36 (10.00) 1.00   1117 115 (10.30) 1.00  
AG 99 16 (16.16) 2.23 (1.28-3.91) 0.005  46 11 (23.91) 2.70 (1.37-5.31) 0.004  145   27 (18.62) 1.98 (1.30-3.02)   0.002 

GG 2   0 (0.00) - -  3   1 (33.33) 4.80 (0.63-36.45) 0.130  5     1 (20.00) 1.66 (0.23-11.97)   0.613 

Trend test   0.007     0.002  
  

   0.002 

AG+GG 101 16 (15.84) 2.21 (1.26-3.86) 0.006  49 12 (24.49) 2.80 (1.45-5.39) 0.002  150   28 (18.67) 1.97 (1.30-2.98)   0.001 

Combined number of risk genotypes4           
0 489 46 (9.41) 1.00   240 17 (7.08) 1.00   729   63 (8.64) 1.00  
1 327 42 (12.84) 1.56 (1.00-2.41) 0.048  152 25 (16.45) 2.52 (1.36-4.67)  0.004  479   67 (13.99) 1.67 (1.19-2.36)   0.003 

2 42   7 (16.67) 2.70 (1.18-6.18) 0.019  17   6 (35.29) 5.55 (2.19-14.08) 0.0003  59   13 (22.03) 2.85 (1.57-5.18)   0.0006 

Trend test  
 0.007    

 <.0001  
  

   <.0001 

0 489 46 (9.41) 1.00  
 240 17 (7.08) 1.00   729   63 (8.64) 1.00  

1-2 369 49 (13.28) 1.66 (1.09-2.53) 0.019   169 31 (18.34) 2.82 (1.56-5.10) 0.0006  538   80 (14.87) 1.79 (1.29-2.50)   0.0005 
Abbreviations: SNP, single-nucleotide polymorphism; CMSS, cutaneous melanoma-specific survival; MDACC, The University of Texas MD Anderson Cancer Center; NHS/HPFS, the 
Nurses’ Health Study and Health Professionals Follow-up Study; HR, hazards ratio; CI, confidence interval; ELOVL2, elongation of very long-chain fatty acids 2; HSD17B12, 
hydroxysteroid dehydrogenase type 12; 
1Adjusted for age, sex, Breslow thickness, distant/regional metastasis, ulceration and mitotic rate in the MDACC dataset; 
2Adjusted for age and sex in the NHS/HPFS dataset; 
3Adjusted for age and sex in the combined dataset of both MDACC and NHS/HPFS; 
4Risk genotypes include ELOVL2 rs3734398 TT and HSD17B12 rs11037684 AG+GG. 
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