5,519 research outputs found

    Statistical energy analysis computer program, user's guide

    Get PDF
    A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented

    Trace Element Distribution in Chalcopyrite-Bearing Porphyry and Skarn Deposits

    Get PDF
    In today's environment, large investments are being made to develop new, green energy sources. These technologies include wind turbines, solar panels, geothermal plants, and many others. Many of these new technologies are created or enhanced with the use of relatively uncommon elements. For example, rare earth element-bearing magnets are used in wind turbines and cadmium-tellurium films are used in the production of photovoltaic cells. Other applications of uncommon elements include catalytic converters, car batteries in hybrid vehicles, and high temperature superconductors. The distribution of uncommon elements is geographically uneven. For example, in 2009, 97% of the world's rare earth production came from China. This makes the rare earths critical elements from a U.S. perspective - elements that are subject to supply disruptions because they are dependent on only one or a few countries. Domestic sources of rare earth and other critical elements should be developed in order to lessen our dependency on foreign export. Much work has been done analyzing gold deposits for trace element association, but little work exists that examines trace elements in copper deposits. The focus of this project is to determine which, if any, trace elements occur within chalcopyrite-bearing deposits, if certain types of copper deposits are more enriched in trace elements than other types, which copper minerals host the trace elements, and if there is any geographical variation in trace elements within the same type of deposit. This project focuses on chalcopyrite-bearing porphyries and skarns due to the widespread nature of the mineral in these deposit types. The key trace elements of interest include tellurium, selenium, gallium, and indium, all of which have potential applications in solar panels. Over the course of this project an analytical error by a commercial laboratory was discovered. The initial geochemical data by ICP-OES determined by the commercial laboratory indicated an anomalously high concentration of tellurium. Iron-tellurium binary plots indicated a near-perfect positive correlation, implying interference. Follow-up analyses by the Denver-based USGS office utilizing an array of analytical techniques (ICP-MS, LA-ICP-MS) failed to reproduce the reported tellurium values. The data indicate that in the presence of high iron there is an iron interference with tellurium when analyzed using ICP-OES. Tellurium occurs as micron-sized inclusions associated with Ag-Bi-Au-Pb and typically hosted within chalcopyrite over other sulfides. Both porphyry and skarn deposits show erratic values, with no discernible preference in type of deposit. Selenium occurs presumably as a lattice substitution into the sulfur site of all sulfide phases but generally is preferentially enriched in chalcopyrite. Other sulfide phases as well as secondary copper phases do show selenium enrichment, but selenium in these phases typically is lower and more erratic than in chalcopyrite. The Yerington and Bingham porphyry deposits report the highest selenium values, with lower values from Grasberg, and none above the detection limit reported from Chuquicamata. Gallium was not identified in sulfide phases in any of the deposits, instead occurring as a lattice substitution into the iron site of magnetite. Indium shows a preferential enrichment in skarn deposits over porphyries. Indium values generally follow silver values, and both are more elevated and more consistent in chalcopyrite from skarns versus porphyry deposits. The Pumpkin Hollow deposit, Lyon County, Nevada, is a series of blind IOCG/skarn deposits genetically related to the emplacement of the Jurassic Yerington batholith. The primary host rocks in the region are the Triassic Mason Valley limestones and the Triassic Gardnerville Formation argillites, limestones, and shales. The sulfide mineralogy observed at Pumpkin Hollow consists of chalcopyrite, pyrite, pyrrhotite, and minor sphalerite, each with an associated trace element suite. The tellurium occurs as separate microscopic mineral inclusions within the chalcopyrite, the selenium as a substitution into all of the sulfides,; the gallium as a substitution into magnetite, and the indium as a substitution in the chalcopyrite

    Prototype of non-genetically modified soybean tracking system using blockchain technology.

    Get PDF
    Genetically Modified Organisms (GMO) soybean is a soybean whose genetic material has been modified using genetic engineering techniques. GMO defenders say that this technology reduces the cost of food and helps producers deal with pests and diseases more safely. On the opposite consumers and environmental groups argue that transgenic crops drive higher use of pesticides. Because of this, there is a specific market for non-GMO crops. Some companies that export to Asia and Europe markets pay a premium for non-GMO soybean. But this non-GMO soybean must have a certificate indicating their purity, i.e., which there is not a mix with GMO soybean. The aim of this work is the development of a prototype of a system to track non-GMO soybean to guarantee its purity. The prototype developed in this work used blockchain technology. The choice for blockchain was because it is very secure against tampering, and, also is a distributed system proper for applications like this, which will track the non-GMO soybean from cultivation to product delivery

    A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds

    Full text link
    Warped product CR-submanifolds in Kaehlerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version of Kaehlerian geometry, was developed, namely warped product contact CR-submanifolds in Sasakian manifolds. In this note we proved that there exists no proper doubly warped product contact CR-submanifolds in trans-Sasakian manifolds.Comment: 5 Latex page

    Statistical energy analysis of complex structures, phase 2

    Get PDF
    A method for estimating the structural vibration properties of complex systems in high frequency environments was investigated. The structure analyzed was the Materials Experiment Assembly, (MEA), which is a portion of the OST-2A payload for the space transportation system. Statistical energy analysis (SEA) techniques were used to model the structure and predict the structural element response to acoustic excitation. A comparison of the intial response predictions and measured acoustic test data is presented. The conclusions indicate that: the SEA predicted the response of primary structure to acoustic excitation over a wide range of frequencies; and the contribution of mechanically induced random vibration to the total MEA is not significant

    NAM-SCA: A Nonhydrostatic anelastic model with segmentally constant approximations

    No full text
    International audienceAn atmospheric convective system may be modeled as an ensemble of discrete plume elements. A representation of decomposited plumes provides the basis for mass-flux convective parameterization. A dry version of such a prototype model is constructed in a two-dimensional horizontally periodic domain. Each discrete plume element is approximated by a horizontally homogeneous segment such that the whole system is given by segmentally constant approximations (SCA) in the horizontal direction for each vertical level in a nonhydrostatic anelastic model (NAM). The distribution of constant segments is highly inhomogeneous in space and evolves with time in a highly adaptive manner. The basic modeling strategy from a physical point of view is to activate new segments vertically upward with time when a convective plume is growing and to deactivate segments when a plume event is over. The difference in physical values crossing segment interfaces is used as a criterion for numerically implementing this strategy. Whenever a large difference is found, the given interface is stretched vertically by subdividing an existing segment into two. In turn, when a segment interface difference is found below the threshold, the given interface is removed, thereby merging the two segments into one. This nonhydrostatic anelastic model with segmentally constant approximations (NAM-SCA) is tested on an idealized atmospheric convective boundary layer. It successfully simulates the evolution of convective plumes with a relatively limited number of segments (i.e., high compression) and with a much scarcer distribution of segments over nonplume environments (i.e., extremely inhomogeneous distribution of segments). Overall, this method compresses the size of the model up to 5 times compared to a standard NAM with homogeneous grid distribution without substantially sacrificing numerical accuracy. © 2010 American Meteorological Society

    Building a multi-hop wireless sensor network for water level monitoring.

    Get PDF
    Abstract-Wireless Sensor Networks (WSN) are very useful for data acquisition in harsh environments or where the maintenance of wired infrastructure would not be viable. Despite of these advantages WSN nodes have a limited range ratio thus to collect data on long distance is necessary to construct a path with many relay nodes to reach the destination. Another limitation of these networks is that they often rely on batteries to operate, which can cause a serious limitation in the network lifetime. In this work it was developed a solution based on a Multi-hop WSN to collect data on long distance, and, also some strategies such as 'sleep schedule', 'data aggregation' and 'hub polling' were implemented to extend the WSN lifetime. This could be done by modifications at RFBee Libraries that reinforces the importance of flexibility and portability of this device
    • …
    corecore