1,687 research outputs found
A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces
A Wasserstein spaces is a metric space of sufficiently concentrated
probability measures over a general metric space. The main goal of this paper
is to estimate the largeness of Wasserstein spaces, in a sense to be precised.
In a first part, we generalize the Hausdorff dimension by defining a family of
bi-Lipschitz invariants, called critical parameters, that measure largeness for
infinite-dimensional metric spaces. Basic properties of these invariants are
given, and they are estimated for a naturel set of spaces generalizing the
usual Hilbert cube. In a second part, we estimate the value of these new
invariants in the case of some Wasserstein spaces, as well as the dynamical
complexity of push-forward maps. The lower bounds rely on several embedding
results; for example we provide bi-Lipschitz embeddings of all powers of any
space inside its Wasserstein space, with uniform bound and we prove that the
Wasserstein space of a d-manifold has "power-exponential" critical parameter
equal to d.Comment: v2 Largely expanded version, as reflected by the change of title; all
part I on generalized Hausdorff dimension is new, as well as the embedding of
Hilbert cubes into Wasserstein spaces. v3 modified according to the referee
final remarks ; to appear in Journal of Topology and Analysi
The VLA Galactic Plane Survey
The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum
emission in the Galactic plane between longitude 18 degrees 67 degr. with
latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was
observed with the Very Large Array (VLA) in 990 pointings. Short-spacing
information for the HI line emission was obtained by additional observations
with the Green Bank Telescope (GBT). HI spectral line images are presented with
a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per
0.824 km/s channel. Continuum images made from channels without HI line
emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images
from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane
Survey (SGPS). In general, the agreement between these surveys is impressive,
considering the differences in instrumentation and image processing techniques
used for each survey. The differences between VGPS and CGPS images are small, <
6 K (rms) in channels where the mean HI brightness temperature in the field
exceeds 80 K. A similar degree of consistency is found between the VGPS and
SGPS. The agreement we find between arcminute resolution surveys of the
Galactic plane is a crucial step towards combining these surveys into a single
uniform dataset which covers 90% of the Galactic disk: the International
Galactic Plane Survey (IGPS). The VGPS data will be made available on the World
Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13
figures. For information on data release, colour images etc. see
http://www.ras.ucalgary.ca/VGP
A Spitzer IRS Survey of NGC 1333: Insights into disk evolution from a very young cluster
We report on the {\lambda} = 5-36{\mu}m Spitzer Infrared Spectrograph spectra
of 79 young stellar objects in the very young nearby cluster NGC 1333. NGC
1333's youth enables the study of early protoplanetary disk properties, such as
the degree of settling as well as the formation of gaps and clearings. We
construct spectral energy distributions (SEDs) using our IRS data as well as
published photometry and classify our sample into SED classes. Using
"extinction-free" spectral indices, we determine whether the disk, envelope, or
photosphere dominates the spectrum. We analyze the dereddened spectra of
objects which show disk dominated emission using spectral indices and
properties of silicate features in order to study the vertical and radial
structure of protoplanetary disks in NGC 1333. At least nine objects in our
sample of NGC 1333 show signs of large (several AU) radial gaps or clearings in
their inner disk. Disks with radial gaps in NGC 1333 show more-nearly pristine
silicate dust than their radially continuous counterparts. We compare
properties of disks in NGC 1333 to those in three other well studied regions,
Taurus-Auriga, Ophiuchus and Chamaeleon I, and find no difference in their
degree of sedimentation and dust processing.Comment: 67 pages, 20 figures, accepted to The Astrophysical Journal
Supplement Serie
The Emergence of the Infrared transient VVV-WIT-06
We report the discovery of an enigmatic large-amplitude (ΔKs> 10.5 mag) transient event in near-IR data obtained by the VISTA Variables in the Via Lactea (VVV) ESO Public Survey. The object (designated VVV-WIT-06) is located at R.A. = 17:07:18.917, decl. = -39:06:26.45 (J2000), corresponding to Galactic coordinates l = 347.14539, b = 0.88522. It exhibits a clear eruption, peaking at Ks = 9 mag during 2013 July and fading to Ks ~ 16.5 in 2017. Our late near-IR spectra show post-outburst emission lines, including some broad emission lines (upward of {FWHM} ~ 3000 k/s). We estimate a total extinction of A_V=10--15 mag in the surrounding field, and no progenitor was observed in ZYJHKs images obtained during 2010-2012 (down to Ks> 18.5 mag). Subsequent deep near-IR imaging and spectroscopy, in concert with the available multiband photometry, indicate that VVV-WIT-06 may be either: (I) the closest Type I SN observed in about 400 years, (II) an exotic high-amplitude nova that would extend the known realm of such objects, or (III) a stellar merger. In all of these cases, VVV-WIT-06 is a fascinating and curious astrophysical target under any of the scenarios considered.Peer reviewe
Magnetic field driven metal-insulator phase transition in planar systems
A theory of the magnetic field driven (semi-)metal-insulator phase transition
is developed for planar systems with a low density of carriers and a linear
(i.e., relativistic like) dispersion relation for low energy quasiparticles.
The general structure of the phase diagram of the theory with respect to the
coupling constant, the chemical potential and temperature is derived in two
cases, with and without an external magnetic field. The conductivity and
resistivity as functions of temperature and magnetic field are studied in
detail. An exact relation for the value of the "offset" magnetic field ,
determining the threshold for the realization of the phase transition at zero
temperature, is established. The theory is applied to the description of a
recently observed phase transition induced by a magnetic field in highly
oriented pyrolytic graphite.Comment: 22 pages, REVTeX, 16 figures. The version corresponding to that
published in Phys.Rev.
Field Blue Stragglers and Related Mass Transfer Issues
This chapter contains my impressions and perspectives about the current state
of knowledge about field blue stragglers (FBS) stars, drawn from an extensive
literature that I searched. I conclude my review of issues that attend FBS and
mass transfer, by a brief enumeration of a few mildly disquieting observational
facts.Comment: Chapter 4, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Mass Transfer by Stellar Wind
I review the process of mass transfer in a binary system through a stellar
wind, with an emphasis on systems containing a red giant. I show how wind
accretion in a binary system is different from the usually assumed Bondi-Hoyle
approximation, first as far as the flow's structure is concerned, but most
importantly, also for the mass accretion and specific angular momentum loss.
This has important implications on the evolution of the orbital parameters. I
also discuss the impact of wind accretion, on the chemical pollution and change
in spin of the accreting star. The last section deals with observations and
covers systems that most likely went through wind mass transfer: barium and
related stars, symbiotic stars and central stars of planetary nebulae (CSPN).
The most recent observations of cool CSPN progenitors of barium stars, as well
as of carbon-rich post-common envelope systems, are providing unique
constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Photoproduction of Long-Lived Holes and Electronic Processes in Intrinsic Electric Fields Seen through Photoinduced Absorption and Dichroism in Ca_3Ga_{2-x}Mn_xGe_3O_{12} Garnets
Long-lived photoinduced absorption and dichroism in the
Ca_3Ga_{2-x}Mn_xGe_3O_{12} garnets with x < 0.06 were examined versus
temperature and pumping intensity. Unusual features of the kinetics of
photoinduced phenomena are indicative of the underlying electronic processes.
The comparison with the case of Ca_3Mn_2Ge_3O_{12}, explored earlier by the
authors, permits one to finally establish the main common mechanisms of
photoinduced absorption and dichroism caused by random electric fields of
photoproduced charges (hole polarons). The rate of their diffusion and
relaxation through recombination is strongly influenced by the same fields,
whose large statistical straggling is responsible for a broad continuous set of
relaxation components (observed in the relaxation time range from 1 to about
1000 min). For Ca_3Ga_{2-x}Mn_xGe_3O_{12}, the time and temperature dependences
of photoinduced absorption and dichroism bear a strong imprint of structure
imperfection increasing with x.Comment: 20 pages, 10 figure
The Multiple Origin of Blue Straggler Stars: Theory vs. Observations
In this chapter we review the various suggested channels for the formation
and evolution of blue straggler stars (BSSs) in different environments and
their observational predictions. These include mass transfer during binary
stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer,
stellar collisions during single and binary encounters in dense stellar
cluster, and coupled dynamical and stellar evolution of triple systems. We also
explore the importance of the BSS and binary dynamics in stellar clusters. We
review the various observed properties of BSSs in different environments (halo
and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and
compare the current observations with the theoretical predictions for BSS
formation. We try to constrain the likely progenitors and processes that play a
role in the formation of BSSs and their evolution. We find that multiple
channels of BSS formation are likely to take part in producing the observed
BSSs, and we point out the strengths and weaknesses of each the formation
channel in respect to the observational constraints. Finally we point out
directions to further explore the origin of BSS, and highlight eclipsing binary
BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
- …