7,413 research outputs found

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    An importance sampling algorithm for generating exact eigenstates of the nuclear Hamiltonian

    Full text link
    We endow a recently devised algorithm for generating exact eigensolutions of large matrices with an importance sampling, which is in control of the extent and accuracy of the truncation of their dimensions. We made several tests on typical nuclei using a correlated basis obtained from partitioning the shell model space. The sampling so implemented allows not only for a substantial reduction of the shell model space but also for an extrapolation to exact eigenvalues and E2 strengths.Comment: A compressed file composed of a text in latex of 19 pages and 9 figures in p

    Parametrization of the octupole degrees of freedom

    Get PDF
    A simple parametrization for the octupole collective variables is proposed and the symmetries of the wave functions are discussed in terms of the solutions corresponding to the vibrational limit. [PACS: 21.60Ev, 21.60.Fw, 21.10.Re]Comment: 14 page

    Observable Electron EDM and Leptogenesis

    Get PDF
    In the context of the minimal supersymmetric seesaw model, the CP-violating neutrino Yukawa couplings might induce an electron EDM. The same interactions may also be responsible for the generation of the observed baryon asymmetry of the Universe via leptogenesis. We identify in a model-independent way those patterns within the seesaw models which predict an electron EDM at a level probed by planned laboratory experiments and show that negative searches on \tau-> e \gamma decay may provide the strongest upper bound on the electron EDM. We also conclude that a possible future detection of the electron EDM is incompatible with thermal leptogenesis, even when flavour effects are accounted for.Comment: 26 pages, 6 figure

    Approximate square-root-time relaxation in glass-forming liquids

    Get PDF
    We present data for the dielectric relaxation of 43 glass-forming organic liquids, showing that the primary (alpha) relaxation is often close to square-root-time relaxation. The better an inverse power-law description of the high-frequency loss applies, the more accurately is square-root-time relaxation obeyed. These findings suggest that square-root-time relaxation is generic to the alpha process, once a common view, but since long believed to be incorrect. Only liquids with very large dielectric losses deviate from this picture by having consistently narrower loss peaks. As a further challenge to the prevailing opinion, we find that liquids with accurate square-root-time relaxation cover a wide range of fragilities

    Reconstructing Seesaws

    Full text link
    We explore some aspects of "reconstructing" the heavy singlet sector of supersymmetric type I seesaw models, for two, three or four singlets. We work in the limit where one light neutrino is massless. In an ideal world, where selected coefficients of the TeV-scale effective Lagrangian could be measured with arbitrary accuracy, the two-singlet case can be reconstructed, two three or more singlets can be differentiated, and an inverse seesaw with four singlets can be reconstructed. In a more realistic world, we estimate \ell_\a \to \ell_\b \gamma expectations with a "Minimal-Flavour-Violation-like" ansatz, which gives a relation between ratios of the three branching ratios. The two singlet model predicts a discrete set of ratios.Comment: 14 page

    Relativistic Turbulence: A Long Way from Preheating to Equilibrium

    Get PDF
    We study, both numerically and analytically, the development of equilibrium after preheating. We show that the process is characterised by the appearance of Kolmogorov spectra and the evolution towards thermal equilibrium follows self-similar dynamics. Simplified kinetic theory gives values for all characteristic exponents which are close to what is observed in lattice simulations. The resulting time for thermalization is long, and temperature at thermalization is low, T100T \sim 100 eV in the simple λΦ4\lambda \Phi^4 inflationary model. Our results allow a straightforward generalization to realistic models.Comment: 4 pages, 3figures, LaTe

    Behavioral economics implementation: Regret lottery improves mHealth patient study adherence.

    Get PDF
    Background: Nonadherence to study protocols reduces the generalizability, validity, and statistical power of longitudinal studies. Purpose: To determine whether an automated electronically-delivered regret lottery would improve adherence to an intensive mHealth self-monitoring protocol as part of a longitudinal observational study. Methods: We enrolled 77 adults into a 52-week study requiring five daily ecologic momentary assessments (EMA) of stress and daily accelerometer use. We performed a pre/post single-arm study to evaluate the efficacy of a lottery intervention in improving adherence to this protocol. Midway through the study, participants were invited to enter a weekly regret lottery ($50 prize, expected value Results: 62 participants consented to lottery participation. In the 12 weeks prior to lottery initiation, weekly adherence was declining (slope -1.4%/week). The weekly per-participant probability of adherence was higher after lottery initiation when comparing the 4-week (32% pre-lottery vs 50% post-lottery, p \u3c 0.001), 8-week (37% vs 49%, p \u3c 0.001), and 12-week periods (39% vs 45%, p = 0.001) before and after lottery initiation. However, the rate of decline in adherence over time was unchanged. Conclusion: The implementation of an automated, electronically-delivered weekly regret lottery improved adherence with an intensive self-monitoring study protocol. Regret lotteries may represent a cost-effective tool to improve adherence and reduce bias caused by dropout or nonadherence

    Tribimaximal Neutrino Mixing and a Relation Between Neutrino- and Charged Lepton-Mass Spectra

    Get PDF
    Brannen has recently pointed out that the observed charged lepton masses satisfy the relation m_e +m_\mu +m_\tau = {2/3} (\sqrt{m_e}+\sqrt{m_\mu}+\sqrt{m_\tau})^2, while the observed neutrino masses satisfy the relation m_{\nu 1} +m_{\nu 2} +m_{\nu 3} = {2/3} (-\sqrt{m_{\nu 1}}+\sqrt{m_{\nu 2}}+\sqrt{m_{\nu 3}})^2. It is discussed what neutrino Yukawa interaction form is favorable if we take the fact pointed out by Brannen seriously.Comment: 13 pages, presentation modifie
    corecore