389 research outputs found
Special features of the Be2He fragmentation in emulsion at an energy of 1.2~A~GeV
The results of investigations of the relativistic Be nucleus
fragmentation in emulsion which entails the production of two He fragments of
an energy of 1.2~A~GeV are presented. The results of the angular measurements
of the Be2He events are analyzed.
The BeBe+n fragmentation channel involving the Be decay from
the ground (0) and the first excited (2) states to two
particles is observed to be predominant.Comment: 10 pages, 6 figures, conference: Conference on Physics of Fundamental
Interactions, Moscow, Russia, 5-9 Dec 2005 (Author's translation
Topology of "white" stars in relativistic fragmentation of light nuclei
In the present paper, experimental observations of the multifragmentation
processes of light relativistic nuclei carried out by means of emulsions are
reviewed. Events of the type of "white" stars in which the dissociation of
relativistic nuclei is not accompanied by the production of mesons and the
target-nucleus fragments are considered.
A distinctive feature of the charge topology in the dissociation of the Ne,
Mg, Si, and S nuclei is an almost total suppression of the binary splitting of
nuclei to fragments with charges higher than 2. The growth of the nuclear
fragmentation degree is revealed in an increase in the multiplicity of singly
and doubly charged fragments with decreasing charge of the non-excited part of
the fragmenting nucleus.
The processes of dissociation of stable Li, Be, B, C, N, and O isotopes to
charged fragments were used to study special features of the formation of
systems consisting of the lightest , d, and t nuclei. Clustering in
form of the He nucleus can be detected in "white" stars via the
dissociation of neutron-deficient Be, B, C, and N isotopes.Comment: 20 pages, 3 figures, 9 tables, conference: Conference on Physics of
Fundamental Interactions, Moscow, Russia, 1-5 Mar 2004.(Author's translation
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
Clustering in light nuclei in fragmentation above 1 A GeV
The relativistic invariant approach is applied to analyzing the 3.3 A GeV
Ne fragmentation in a nuclear track emulsion. New results on few-body
dissociations have been obtained from the emulsion exposures to 2.1 A GeV
N and 1.2 A GeV Be nuclei. It can be asserted that the use of the
invariant approach is an effective means of obtaining conclusions about the
behavior of systems involving a few He nuclei at a relative energy close to 1
MeV per nucleon. The first observations of fragmentation of 1.2 A GeV B
and C nuclei in emulsion are described. The presented results allow one
to justify the development of few-body aspects of nuclear astrophysics.Comment: 7 pages, 8 figures, 3 tables, Nuclear Physics in Astrophysics-2,
16-20 May, 2005 (ATOMKI), Debrecen, Hungar
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
- …
