249 research outputs found
Pivotal response treatment for school-aged children and adolescents with autism spectrum disorder: a randomized controlled trial
Pivotal Response Treatment (PRT) is promising for children with Autism Spectrum Disorder (ASD), but more methodologically robust designed studies are needed. In this randomized controlled trial, forty-four children with ASD, aged 9-15 years, were randomly allocated to PRT (n = 22) or treatment-as-usual (TAU; n = 22). Measurements were obtained after 12- and 20-weeks treatment, and 2-month follow-up. PRT resulted in significant greater improvements on parent-rated social-communicative skills after 12 weeks treatment (p = .004, partial eta(2) = 0.22), compared to TAU. Furthermore, larger gains in PRT compared to TAU were observed on blindly rated global functioning, and parent-rated adaptive socialization skills and attention problems. Implications for clinical practice and suggestions for future research are discussed.Education and Child Studie
Peanut butter feeding induces oral tolerance in genetically diverse collaborative cross mice
BackgroundEarly dietary introduction of peanut has shown efficacy in clinical trials and driven pediatric recommendations for early introduction of peanut to children with heightened allergy risk worldwide. Unfortunately, tolerance is not induced in every case, and a subset of patients are allergic prior to introduction. Here we assess peanut allergic sensitization and oral tolerance in genetically diverse mouse strains.ObjectiveWe aimed to determine whether environmental adjuvant-driven airway sensitization and oral tolerance to peanut could be induced in various genetically diverse mouse strains.MethodsC57BL/6J and 12 Collaborative Cross (CC) mouse strains were fed regular chow or ad libitum peanut butter to induce tolerance. Tolerance was tested by attempting to sensitize mice via intratracheal exposure to peanut and lipopolysaccharide (LPS), followed by intraperitoneal peanut challenge. Peanut-specific immunoglobulins and peanut-induced anaphylaxis were assessed.ResultsWithout oral peanut feeding, most CC strains (11/12) and C57BL/6J induced peanut-specific IgE and IgG1 following airway exposure to peanut and LPS. With oral peanut feeding none of the CC strains nor C57BL/6J mice became sensitized to peanut or experienced anaphylaxis following peanut challenge.ConclusionAllergic sensitization and oral tolerance to peanut can be achieved across a range of genetically diverse mice. Notably, the same strains that became allergic via airway sensitization were tolerized by feeding high doses of peanut butter before sensitization, suggesting that the order and route of peanut exposure are critical for determining the allergic fate
POMC: The Physiological Power of Hormone Processing.
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon
Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia)
Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotianatabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP+ to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI–MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP+ as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro
Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought
Host genetic signatures of susceptibility to fungal disease
Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the
European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the
Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013
to CC), the Institut Mérieux (Mérieux Research Grant 2017 to CC), and the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)
Multiple Determinants of Externalizing Behavior in 5-Year-Olds: A Longitudinal Model
In a community sample of 116 children, assessments of parent-child interaction, parent-child attachment, and various parental, child, and contextual characteristics at 15 and 28 months and at age 5 were used to predict externalizing behavior at age 5, as rated by parents and teachers. Hierarchical multiple regression analysis and path analysis yielded a significant longitudinal model for the prediction of age 5 externalizing behavior, with independent contributions from the following predictors: child sex, partner support reported by the caregiver, disorganized infant-parent attachment at 15 months, child anger proneness at 28 months, and one of the two parent-child interaction factors observed at 28 months, namely negative parent-child interactions. The other, i.e., a lack of effective guidance, predicted externalizing problems only in highly anger-prone children. Furthermore, mediated pathways of influence were found for the parent-child interaction at 15 months (via disorganized attachment) and parental ego-resiliency (via negative parent-child interaction at 28 months)
- …