Gray matter maturation is differentially influenced by early-life and pubertal stressful experiences

Citation for published version (APA):

Tyborowska, A., Volman, I., Niermann, H., Pouwels, L., Smeekens, S., Cillessen, A., Toni, I., & Roelofs, K. (2016). Gray matter maturation is differentially influenced by early-life and pubertal stressful experiences: a prospective longitudinal study. Abstract from The 4th Annual Flux Congress, St. Louis, Missouri, United States.

Document status and date: Published: 09/09/2016

Document Version:

Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy

If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 19 Nov. 2022

4th Annual Flux Congress

Program September 8-10, 2016

Hilton St Louis at the Ballpark St Louis, Missouri, USA

www.fluxsociety.org

4th Annual Flux Congress • September 8–10, 2016 **Program-at-a-Glance**

			Thursday			Friday			Saturday
	08-Sep		09-Sep		10-Sep				
8:30 AM			Welcome Comments						
8:45 AM			8:30-9:00am						
9:00 AM									
9:15 AM									
9:30 AM			Oral Session 1			Oral Session 2			Oral Session 5
9:45 AM			Tuberous Sclerosis			NeuroLaw Symposium 9:00-10:30am			ABCD Symposium 9:00-10:30am
10:00 AM			Symposium			9:00-10:30am			9:00-10:30am
10:15 AM			9:00-11:00am				Ę		
10:30 AM							nq	ε	
10:45 AM						Break (30 minutes)	00:	2:00pm	Break (30 minutes)
11:00 AM	E	_		E			n-3		
11:15 AM	00pm	5:00pm	Break (30 minutes)	8:30am-5:00pm	Ъш		0ar	Ė	Oral Session 6
11:30 AM	÷.	00:		-2i	8 8	Oral Session 3	8:3	8:30am	Parcellating the Human
11:45 AM	am		Science of Learning	am	- 2	Infant Development	ue	3:3	Brain Symposium
12:00 PM	:30am-	m	Symposium - Part 1	30	E	Symposium	odc	<u>ک</u>	11:00-12:15pm
12:15 PM	1	306	11:30-12:30pm	ö	8:30am - 5:00pm	11:00-1:00pm	sk S	Display	
12:30 PM	Open	Posters on Display 8:30am		Open 8	8		Desk Open 8:30am-3:00pm		
12:45 PM		lay		ō	lay		n I	uo	Poster Session 3 & Lunch
1:00 PM	Desk	isp	Poster Session 1 & Lunch	Desk	on Display		Registration	rs	12:15-1:45pm
1:15 PM		D	12:30-2:00pm				stra	Posters	
1:30 PM	ion	10 3		ion	0		egi:	Ъ	
1:45 PM	Registration	ers		Registration	Posters	Poster Session 2 & Lunch	ĸ		
2:00 PM	jist	ost		list	ost	1:00-3:00pm			
2:15 PM	2ec	٩		Sec.	۵.				
2:30 PM									Oral Session 7
2:45 PM			Science of Learning						Large Scale Networks
3:00 PM			Symposium - Part 2						Symposium 1:45-3:45pm
3:15 PM			2:00-4:00pm						
3:30 PM						Oral Session 4			
3:45 PM						Translational Animal Models Symposium 3:00-5:00pm	Summary & Closing 3:45-4:00pm		
4:00 PM			Huttenlocher Lecture						· · · · ·
4:15 PM									
4:30 PM			4:00-5:00pm						
4:45 PM									
5:00 PM									
5:15 PM									
5:30 PM									
5:45 PM									flux
6:00 PM			Welcome Reception						F ILLY
6:15 PM		N	lissouri Athletic Club						
6:30 PM			5:30-7:00pm						
6:45 PM									THE SOCIETY FOR DEVELOPMENTAL
7:00 PM									COGNITIVE
7:15 PM						Flux Excursion			NEUROSCIENCE
7:30 PM						City Museum			
7:45 PM					6:00-10:00pm				
8:00 PM									
8:15 PM									
8:30 PM									
8:45 PM									

Program Contents

~

-.

About the Flux Congress

The aim of the congress is to provide a forum for developmental cognitive neuroscientists to share their findings on the development of brain processes that support cognition and motivation from an integrative neuroscience perspective. Thus, it provides an opportunity for scientists in the field to expand their knowledge base, and also be better informed of translational approaches.

The Flux Society was launched in June 2014, and has seen growth in its membership each year. To learn more about the Flux Society, please visit **www.fluxsociety.org**.

Flux Congress 2016 Program-at-a-Glance
About the Flux Congress
Welcome Letters
General Congress Information
Congress Venue Floor Plan
Flux Social Functions with map
Flux Congress Program Schedule
Flux Congress Oral Presentations
Flux Congress Poster Floor Plan
Flux Congress Poster Author Index
Flux Congress Posters Titles, Authors and Affiliations
Flux Congress Sponsors and Exhibitors

Welcome to Flux Congress attendees

Welcome to our fourth meeting of Flux, the International Congress for Integrative Developmental Cognitive Neuroscience, in St. Louis! After a full rotation of eastern (Flux 1 in Pittsburgh, PA) and western (Flux 2 in Los Angeles, CA) US locations, and an international venue (Leiden, Netherlands), we are delighted that we are meeting in St. Louis for this year's Flux 4, 2016 where we had approximately 160 abstract submissions and 140 memberships and continue to grow.

St. Louis is appropriately the home of the prestigious Washington University, St. Louis, the Human Connectome Project, and where many of the pioneers and stars of Developmental Cognitive Neuroscience have trained or call(ed) home including our hosts Brad Schlaggar and Deanna Barch, our Program Chair, Damien Fair, our members and speakers Tim Brown, Nico Dosenbach, and Steve Petersen, and our Huttenlocher Lecturer, Michael Posner.

We encourage you to watch the entertaining and informative video of invitation from the Mayor of St. Louis at: https://youtu.be/ENCx8Jj8xRc.

We are particularly excited to have support from the Jacobs Foundation, the Intellectual and **Developmental Disabilities Research Center at** Washington University in St. Louis (IDDRC@WUSTL), the St. Louis Children's Hospital Foundation, the McDonnell Center for Systems Neuroscience, The Provost's Office at Washington University in St. Louis, the Washington University Department of Psychological and Brain Science, the Washington University Department of Neurology's Tuberous Sclerosis Center, and Elsevier's Developmental **Cognitive Neuroscience**, now the official journal of the Flux Society. These collaborations enhance our scientific aims including the ability to provide, for the first time, student travel awards. We were overjoyed to have awarded 10 North American and 5 International student travel awards, along with 3 Early Career Awards for speakers in a symposium on the Science of Learning. We would like to express our sincere and deep gratitude to those who have worked tirelessly to bring you Flux 4, St. Louis.

In particular, we thank this year's conference hosts **Brad Schlaggar** and **Deanna Barch** for the fantastic job they did of securing an exciting conference venue. In keeping with our tradition of providing a chance to interact and form lasting bonds in an outstanding entertaining environment, we are looking forward to the **City Museum** party.

Thank you to **Damien Fair** for the outstanding job you did as the Program chair with your committee members: Sarah-Jayne Blakemore, Tim Brown, Claudia Buss, Hugh Garavan, Mar Sanchez, Ted Satterthwaite, Brad Schlaggar, and Nim Tottenham for organizing an exciting and innovative scientific program.

A special thank you to the 2016 Huttenlocher Awardee **Michael Posner** for his foundational contributions to defining Developmental Cognitive Neuroscience and for opening the meeting by enlightening us with his unique wisdom of the field.

Finally, a warm thank you to the members of the Flux Society and conference participants for making the time to attend the Flux conference and making it such an exciting event!

We would like to extend a warm welcome to new members and invite new members to join. To those who are new or have forgotten, "Flux" is not an acronym but rather a term used to remind us that, as developmental cognitive neuroscientists, we are distinct in our investigations of the dynamic nature of cognition through development as stated in the aim of the Flux Society:

"To advance the understanding of human brain development by serving as a forum for professional and student scientists, physicians, and educators to: exchange information and educate the next generation of developmental cognitive neuroscience researchers; make widely available scientific research findings on brain development; encourage translational research to clinical populations; promote public information by discussing implications on the fields of education, health, juvenile law, parenting, and mental health, and encourage further progress in the field of developmental cognitive neuroscience."

The Flux Society strives to support Flux meetings going forward, but also to expand our ability to provide venues for scientific discussion and translational application.

We have received tremendous positive feedback from previous Flux meetings as well as great suggestions on improvements that have been incorporated into the design of this meeting as we continue to make this unique event serve the needs and ambitions of our growing society. We are actively considering ways that we can expand as a Society, finding new and interesting ways to enhance discussion and dissemination. We are always looking for those who want to become involved in extending venues for us as a field to advance our science through discussions and collaborations. We have an open search for those who want to head the organization of Webinars to hold discussions on current topics in DCN as well as a newsletter. If you are interested please approach a Board Member at the meeting. We also have a growing job bank that has proven to be very useful to both those seeking and offering positions in DCN. We are happy to hear any suggestions from members regarding either the conference or ways in which the Flux Society can best serve our field.

Finally, we are delighted to invite you to plan on attending Flux 5, September 16-18, 2017 in Portland, Oregon hosted by Nick Allen, Damien Fair, Bonnie Nagel, Jenn Pfeiffer, and Fred Sabb. As you know, University of Oregon and Oregon **Health & Science University** are at the forefront of developmental cognitive neuroscience research using both human neuroimaging and animal models. This western US meeting promises to be another extraordinary experience in our continued quest to support growth in our field.

We are looking forward to expanding our understanding of developmental cognitive neuroscience and interacting with attendees and are confident that you will leave with greater understanding, new friends, and enhanced creativity in your approach.

Sincerely,

Beatriz Luna President Brad Schlaggar Vice-President

Silvia Bunge Executive Secretary Bruce McCandliss Executive Treasurer

Welcome to the 4th Flux Congress

We are excited as a committee and Board to bring to St. Louis a set of diverse speakers that span many important areas in our field. We focused this year's program on "hot topics" in today's developmental cognitive neuroscience landscape. Examples include, The Science of Learning, NeuroLaw, Graph Theory and Complex Network Development, and a special Adolescent Brain and Cognitive Development (ABCD) session, amongst many others. Under this scope, and considering feedback from our members from prior meetings, we welcomed both top senior and junior investigators to present at the oral sessions, as well as several graduate students and postdocs. The hope is that a range of views and important discussions will emerge from this format. These presentations along with the 156 posters at this year's meeting should make for an eventful and fulfilling meeting. Last, we are honored to feature Dr. Michael Posner at the Huttenlocher Lecture who has shaped the field and the trajectories of the science in so many ways.

In addition to our excellent scientific program, we have organized two social events that we hope attendees will enjoy. The Opening Reception will take place from 5:30 PM to 7:00 PM on Thursday, September 8th at the Missouri Athletic Club, only a few blocks from the Congress Venue. We have also organized a fun night of food, dancing and exploration at the City Museum, just a short shuttle ride away in downtown St. Louis. The City Museum, a truly unique St. Louis experience that is a play house for children and adults, is built from repurposed architectural and industrial "found" objects. Check out the "roof atop the city", that includes the Big Eli Ferris Wheel and the Praying Mantis Slide, as well as the Enchanted Caves, 10-Story Spiral Slide, and much more! In addition, ask your local hosts about how to sample the wonderful local blues and jazz music venues, another quintessential St. Louis experience. Visit the brand new National Blues Museum

(https://www.nationalbluesmuseum.org), or get tickets now to the world famous St. Louis Symphony which will kick off the 2016-2017 season on 9/8-9/11 with a symphonic accompaniment of Harry Potter and Sorcerer's Stone, perfect timing for Flux (http://shop.stlsymphony.org/single/EventDetail.as px?p=5338)!

St Louis – Gateway to the West

St. Louis is a thriving and vibrant town that is home to wonderful restaurants, music, theater, outstanding professional sports (Go Cardinals and Blues!) and numerous excellent Universities and Colleges, including

Washington University. Washington University was founded in 1853, and is an internationally renowned leader in research, teaching and patient care. Washington University has two main campuses (Danforth and Medical) that bracket Forest Park, the nation's largest urban park and site of the 1904 World's Fair, and has been home to 24 Nobel Laureates. Washington University supports over 6000 undergraduate and over 5000 graduate and professional students in a range of disciplines that include Arts & Sciences, Medicine, Law, Engineering, Social work, Public Health, Art and Architecture. St. Louis is home to many museums and unique historical and cultural attractions, including Forest Park, which houses 10 kilometers of running and biking trails, 2 golf courses, the St. Louis Art Museum, the Missouri History Museum, the St. Louis Science Center and Planetarium, the St. Louis Zoo and the "Muny", America's largest and oldest outdoor musical theatre.

Flux Congress Venue: The Hilton Ballpark Village

The Hilton St. Louis at the Ballpark is a recently renovated venue in the heart of downtown St. Louis, right next to Busch Stadium and Ballpark Village and footsteps from the iconic St. Louis Gateway Arch and numerous other downtown historical, dining and entertainment attractions. Busch Stadium is home to the St. Louis Cardinals Baseball team, who have won 19 National League pennants and 11 World Series championships. The Cardinals will be in town playing the Milwaukee Brewers during the congress, so consider staying over Saturday night to watch the game in beautiful Busch Stadium. The central location and easy access of the Hilton Ballpark Village make it an ideal venue for the Flux Congress.

We look forward to this stimulating meeting and to interaction with all of the wonderful Flux Congress attendees.

Sincerely,

Damien Fair Grand Poobah and Flux Congress Program Chair **Brad Schlaggar and Deanna Barch** Flux Congress Local Organizing Committee Chairs

Flux Leadership

HYALT

Society Executive Committee

University of Pittsburgh, USA Beatriz Luna President Brad Schlaggar Washington University in St. Louis, USA Vice President Silvia Bunge University of California, Berkeley, USA **Executive Secretary Bruce McCandliss** Vanderbilt University, USA **Executive Treasurer**

Congress Local Organizing Co-Chairs

Brad Schlaggar Washington University in St. Louis, USA Deanna Barch Washington University in St. Louis, USA

Congress Scientific Program Committee

Damien Fair, Chair Oregon Health and Sciences University, USA Sarah-Jayne Blakemore University College London, UK Tim Brown University of California, San Diego, USA **Claudia Buss** Institut für Medizinische Psychologie, Germany Hugh Garavan University of Vermont, USA Mar Sanchez Emory University, USA Ted Satterthwaite University of Pennsylvania, USA Brad Schlaggar Washington University in St. Louis, USA Nim Tottenham University of California, Los Angeles, USA

UX THE SOCIETY FOR DEVELOPMENTAL COGNITIVE

Flux Congress Management

adaminin p chilles were

Gabriela Dominguez

General Congress Information

Meeting Venue

Hilton St. Louis at the Ballpark 1 South Broadway St. Louis, MO 63102 USA Tel: +1-314-421-1776 Fax: +1-314-331 9029

All congress sessions will take place at this location, the Welcome Cocktail Reception and the Flux Excursion will take place at offsite venues.

Registration

Congress registration fees include access to all sessions including the welcome reception, speaker presentations, grazing lunches, coffee breaks, and poster sessions.

Name Badges

Your name badge is your admission ticket to all conference sessions, reception, lunch, and coffee breaks. Please wear it at all times. At the end of the conference we ask that you recycle your name badge at one of the name badge recycling stations, or leave it at the Registration Desk.

Registration and Information Desk Hours

The Registration and Information Desk, located in the **Arch View Foyer**, will be open during the following dates and times:

Thursday, September 8	7:30 am - 5:00 pm
Friday, September 9	8:30 am - 5:00 pm
Saturday, September 10	8:30 AM - 3:00 PM

If you need assistance during the meeting, please visit the Registration Desk.

Staff

Congress staff from **Podium Conference Specialists** can be identified by ribbons on their name badges. For immediate assistance, please visit us at the registration desk in the Arch View Foyer.

Complimentary WIFI Information:

Complimentary Wifi is available in the hotel lobby on the ground floor and in your hotel guestroom. Please note there is no wifi available in the meeting rooms.

Network: Hilton Lobby

Nearby Amenities:

Starbucks – Opens at 6:00 AM daily, located in the Lobby Level of the hotel.

Market Street Bistro and Bar – Open from 6:30 AM daily, located in the Lobby Level of the hotel.

Imo's Pizza – Opens at 11:00 AM daily, located adjacent to the hotel.

Ballpark Village – Opens at 11:00 AM daily, located across the street from the hotel.

Three Sixty Rooftop Bar – opens at 4:00 PM daily, located on the 26th floor of the hotel.

Poster Information

Information on Poster Authors, Poster Numbers and Poster Titles begins on page 20. For a complete list of all poster abstracts visit the Flux website **www.fluxcongress.org**.

Easy reference **Poster Floor Plans** for each session can also be found on page 19 of this program.

Set-Up / Removal

There are three Poster Sessions during the Congress and posters have been allocated to one of the sessions based on poster themes. Poster presenters must set-up and remove their posters during the following times.

Poster Session 1 – Thursday, September 8

Poster Set-up:

Thursday, September 8: 7:30 - 8:30 AM

Poster Hours:

11:00 – 11:30 AM - Morning Break 12:30 – 2:00 РМ - Lunch **Removal of all posters by: 5:30 РМ on September 8**

Poster Session 2 – Friday, September 9

Poster Set-up: Friday, September 9: 8:00 – 9:00 AM

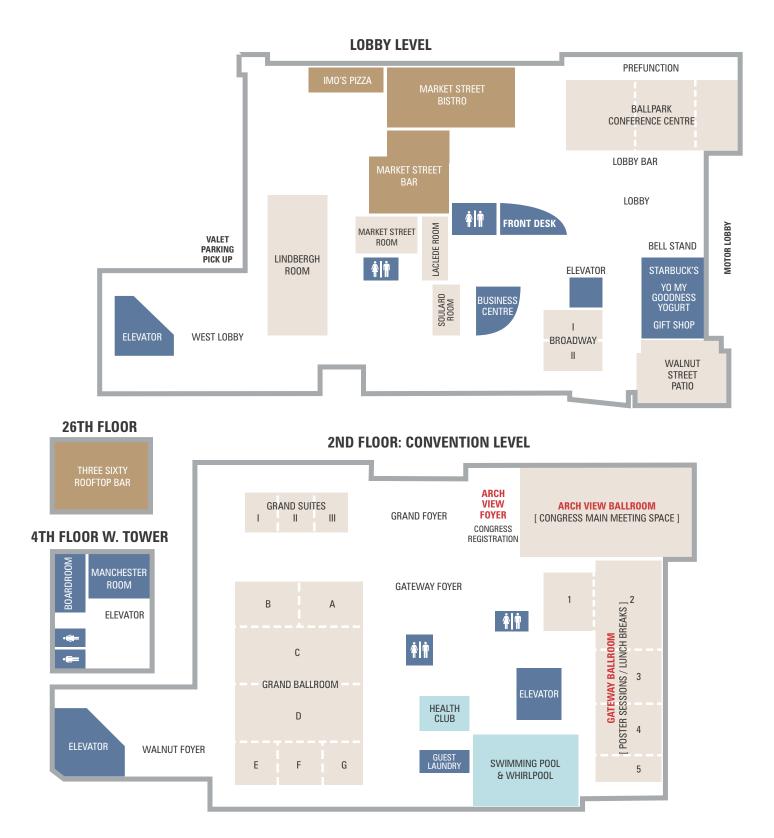
Poster Hours:

10:30 – 11:00 ам - Morning Break 1:00 – 3:00 рм - Lunch Removal of all posters by: 5:30 рм on September 9

temoval of an posters by: 5.50 PM on September

Poster Session 3 – Saturday, September 10

Poster Set-up: Saturday, September 10: 8:00 – 9:00 AM


Poster Hours:

10:30 – 11:00 AM - Morning Break 12:15 – 1:45 PM - Lunch

Removal of all posters by: 2:00 PM on September 10

Congress Venue Floor Plan

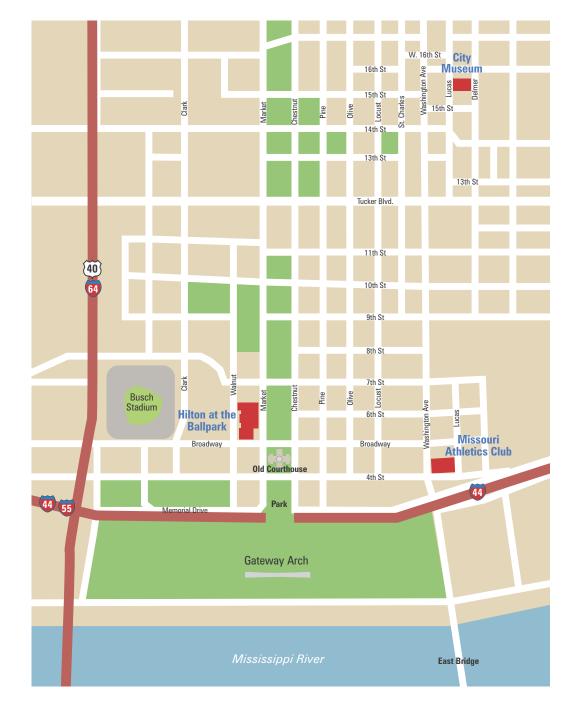
Hilton St. Louis at the Ballpark

Flux Social Functions

Opening Reception

The Opening Reception will take place at the **Missouri Athletic Club** (405 Washington Ave.) from 5:30 – 7:00 PM, on Thursday, September 8. Canapes will be served, and there will be a cash bar.

Delegates are invited to walk over to the venue as it is only a short walk away.


See map below for walking directions.

Flux Congress Excursion

This year's Flux excursion will take place at **City Museum** located at 750 N 16th Street in St. Louis. Please note **advance ticket purchase is required for this event** – if you did not purchase a ticket at the time of registration please visit the registration desk to confirm availability.

The museum is a 20-minute walk from the hotel. If you prefer to take transport, **shuttle service** from the hotel begins at 5:30 PM from the Walnut Street exit.

This event is casual: come dressed for climbing and exploring! Sneakers are highly recommended. A cash bar will be available.

St Louis Downtown

Venue Locations

Flux Congress Program Schedule

Day 1 Thursday, September 8

8:30 – 9:00 am	Welcome Comments
	Beatriz Luna University of Pittsburgh, USA
	Brad Schlaggar Washington University in St. Louis, USA
	Deanna Barch Washington University in St. Louis, USA
	Damien Fair Oregon Health and Sciences University, USA
	Oral Session 1: Tuberous Sclerosis Symposium
	Sponsored by Washington University Tuberous Sclerosis Center
	Discussant: Brad Schlaggar, Washington University St. Louis, USA
9:00 – 9:20 am	O.1.1. Tuberous Sclerosis Complex – A Clinical Overview Anna Jeong Washington University St Louis, USA
	And Seong Washington University St Louis, USA
9:20 – 9:45 am	O.1.2. Timing and mechanisms of atypical development in
	Tuberous Sclerosis Complex
	Shafali Jeste UCLA, USA
9:45 – 10:10 am	O.1.3 Cellular and Molecular Mechanisms of Cognitive Deficits in
	Tuberous Sclerosis Complex:Insights from Mouse Models
	Michael Wong Washington University St Louis, USA
10:10 – 10:35 ам	O.1.4. MRI biomarkers and early medical interventions in TSC
	Jurriaan Peters Harvard Medical School, USA
10:35 – 11:00 ам	Q&A
10.35 - 11.00 AM	
11:00 – 11:30 АМ	Coffee Break
	Science of Learning Symposium - Part 1
	Winners of the Early Career Awards as supported by Jacobs Foundation
	Discussant: Tim Brown University of California, San Diego, USA
11:30 – 11:50 рм	S.1.1. Motivation and feedback-based learning in adolescent
	corticostriatal networks
	Samantha DePasque UCLA, USA
11:50 – 12:10 рм	S.1.2. Neural patterns of reading and mathematics development
11.50 - 12.10 PM	from controlled versus naturalistic stimuli
	Alyssa Kersey University of Rochester, USA
12:10 – 12:30 рм	S.1.3. Navigating Uncertainty: Neural Correlates of Decisions
	form Experience in Adolescence
	Wouter van den Bos Max Planck Institute for Human Development, Germany
12:30 – 2:00 рм	Poster Session 1 / Lunch

Flux Congress Daily Schedule

Day 1	Thursday, September 8 continued
	Science of Learning Symposium – Part 2
2:00 – 2:30 pm	S.2.1. The neural circuitry of skilled reading Jason Yeatman University of Washington, USA
2:30 – 3:00 pm	S.2.2. Number Symbols and the Developing Brain Daniel Ansari University of Western Ontario, Canada
3:00 – 3:30 рм	S.2.3. Education Neuroscience John Gabrieli MIT, USA
3:30 – 4:00 рм	Q&A
	Huttenlocher Lecture
4:00 – 5:00 pm	Brain Changes with Development and Training Michael Posner University of Oregon, USA
5:30 – 7:00 PM	Opening Reception – Missouri Athletic Club
Day 2	Friday, September 9
	Oral Session 2: NeuroLaw Symposium Discussant: Kim Taylor Thompson NYU Law, USA
9:00 – 9:20 AM	O.2.1. Development of the social brain and the peer influence on adolescent crime Jason Chein Temple University, USA
9:20 – 9:40 am	O.2.2. When is adolescent an adult? Ali Cohen Sackler Institute, USA
9:40 – 10:00 am	O.2.3. The Risk Triangle: The combined effects of peer presence, social cues and rewards on cognitive control capacity in adolescents Adrianna Galvan University of California, Los Angeles, USA
10:00 – 10:30 am	Q&A
10:30 – 11:00 ам	Coffee Break
	Oral Session 3: Infant Development Symposium Discussant: Joel Nigg Oregon Health & Science University, USA

11:00 – 11:30 AM O.3.1. Towards an Increased Understanding of Prenatal Influences on Neurodevelopment Alice Graham Oregon Health & Science University, USA

11:30 – 12:00 рм	O.3.2. Brain structure and cognitive development in early childhood John Gilmore University of North Carolina, USA
12:00 – 12:30 рм	O.3.3. The Developing Brain : MRI Assessments of structural and Functional Development Sean Deoni Brown University, USA
12:30 – 1:00 рм	Q&A
1:00 – 3:00 рм	Poster Session 2 / Lunch
	Oral Session 4: Translational Animal Models Symposium Discussant: Nim Tottenham Columbia University, USA
3:00 – 3:30 pm	O.4.1. Caregiver Influence Over the Infant Brain and Behavior Regina Sulivan NYU School of Medicine, USA
3:30 – 4:00 pm	O.4.2. Early Maternal Care Regulates the Development of Emotional Behavior and Neurocircuitry: a Nonhuman Primate Model Mar Sanchez Emory University, USA
4:00 – 4:30 pm	O.4.3. Developmental factors in toggling between actions and habits: Effects of adolescent adversity and relation to depression-like behavior Shannon Gourley Emory University, USA
4:30 – 5:00 pm	Q&A
6:00 – 10:00 рм	Flux Excursion at City Museum – advance ticket purchase required

Day 3 Saturday, September 10

Oral Session 5: ABCD Symposium

Discussant: Ted Satterthwaite University of Pennsylvania, USA

9:00 – 9:20 am	O.5.1. Real-time motion analytics during brain MRI improve data quality and reduce costs
	Nico Dosenbach Washington University in St Louis, USA
9:20 – 9:40 AM	0.5.2. Overview of the ABCD Study
	Terry Jernigan University of California, San Diego, USA
9:40 – 10:00 AM	O.5.3. Harmonized Human Connectome Protocols for the ABCD Study
	Anders Dale University of California, San Diego, USA
10:00 – 10:30 ам	Q&A

10:30 – 11:00 AM **Coffee Break**

Day 3	Saturday, September 10 continued
	Oral Session 6: Parcellating the Human Brain Symposium Discussant: Steve Petersen , Washington University St Louis, USA
11:00 – 11:25 ам	O.6.1. Boundary-based parcellation of human cerebral cortex using functional connectivity MRI Evan Gordon VISN 17 Center of Excellence (VISN CoE), USA
11:25 – 11:50 рм	O.6.2. A multimodal parcellation of human cerebral cortex David Van Essen Washington University St Louis, USA
11:50 – 12:15 рм	Q&A
12:15 – 1:45 pm	Poster Session 3 / Lunch
	Oral Session 7: Large Scale Networks Symposium Discussant: Olaf Sporns University of Indiana, USA
1:45 – 2:15 рм	O.7.1. Richness of the human brain network Martijn Van Den Heuvel University Medical Center Utrecht, The Netherlands
2:15 – 2:45 pm	O.7.2. Genetic and developmental influences on large-scale brain networks Alex Fornito Monash University, Australia
2:45 – 3:15 рм	O.7.3. Evolution of brain network dynamics in neurodevelopment Danielle Bassett University of Pennsylvania, USA
3:15 – 3:45 рм	Q&A
3:45 – 4:00 рм	Summary & Closing

Flux Congress Oral Presentations

Thursday, September 8

Oral Session 1: Tuberous Sclerosis Symposium

Sponsored by the Tuberous Sclerosis Center at Washington University School of Medicine

Washington University Tuberous Sclerosis Center

Discussant: **Brad Schlaggar**, Washington University in St Louis

Anna Jeong, Washington University in St Louis

0.1.1.Tuberous Sclerosis Complex - A Clinical Overview

Tuberous Sclerosis Complex (TSC) is model disorder for the study of cognitive dysfunction, epilepsy, and autism. This talk will serve as an overview of TSC, specifically addressing the clinical manifestations, pathological features, and inheritance pattern of the disease. The underlying pathophysiology of TSC will also be discussed, with a focus on the mechanistic/mammalian (mTOR) pathway.

Shafali Jeste, UCLA

0.1.2. Timing and mechanisms of atypical development in Tuberous Sclerosis Complex

Tuberous Sclerosis Complex confers a high risk for neurodevelopmental disorders, including Autism Spectrum Disorder (ASD) and Intellectual Disability (ID). The high rate of ASD and ID, combined with the fact infants are diagnosed with the genetic syndrome prior to the onset of social communication or cognitive delays, has led to TSC being considered a model disorder for studying the emergence of atypical development. We recently completed the first prospective, longitudinal study of early development in infants with TSC (Jeste, 2014, 2016), with the goal of defining the timing and understanding the emergence of developmental delays in infancy. We integrated electrophysiological and behavioral assays to investigate specific mechanisms underlying atypical development, with particular focus on visual processing, face perception, attention and nonverbal communication. Results from this study have informed a new early intervention study targeting social communication skills in these high risk infants.

Michael Wong, Washington University in St Louis O.1.3. Cellular and Molecular Mechanisms of Cognitive Deficits in Tuberous Sclerosis Complex: Insights from Mouse Models

Cognitive deficits, autism, and epilepsy are common neurological manifestations of tuberous sclerosis complex (TSC), but biological mechanisms causing the neurological phenotype of TSC are poorly understood. The prototypic structural brain abnormalities of cortical tubers in TSC led to the "tuber hypothesis", in which these gross pathological lesions account for cognitive and other neurological dysfunction. However, recent advances in molecular genetics have identified cellular and molecular abnormalities, such as in the mTOR pathway, which contribute to neurological symptoms of TSC independent of tubers. Mouse models have been particularly useful in identifying underlying mechanisms and therapeutic strategies for neurological deficits in TSC.

Jurriaan Peters, Harvard Medical School 0.1.4. MRI biomarkers and early medical interventions in TSC

The neurological phenotype in Tuberous Sclerosis Complex (TSC) is highly variable and unpredictable. It is determined by multiple interrelated factors including genotype, clinical variables, and lesion burden. Improved long-term cognition with early treatment of epilepsy has been reported in small retrospective series. Recently, routine clinical EEG abnormalities were shown to precede seizure onset, allowing for risk-stratification in a treatment trial with preventative antiseizure medication. Early structural magnetic resonance imaging (MRI) studies revealed a group effect of lesion burden, but had no individual predictive ability. More recently, diffusion tensor imaging (DTI) metrics of the normal appearing white matter (NAWM) were associated with outcome measures. Moreover, a longitudinal DTI study showed improvement of white matter maturation in patients treated with mTOR inhibitors. Although currently still nonspecific, DTI could be a biologically relevant, non-invasive and widely available biomarker for neurological outcome in TSC.

Science of Learning Symposium: Part 1

Winners of the Early Career Award, supported by the Jacobs Foundation

Discussant: Tim Brown, University of California, San Diego

Samantha DePasque, UCLA

S. 1.1. Motivation and feedback-based learning in adolescent corticostriatal networks

During adolescence, youth must learn about the consequences of their choices as they hone their decision making skills. Performance-related feedback is one tool educators use to guide learning; however, its learning efficacy depends upon motivation. Corticostriatal systems play a critical role in motivation and learning, so it is important to understand how ontogenetic changes in these systems might scaffold feedback-based learning. This study uses fMRI to compare adolescents' (age 11-15) and adults' (age 23-30) neural responses to feedback under varying motivational contexts. Participants complete a learning task in three phases: 1) study, 2) feedback, 3) post-test. During the feedback phase, 4 blocks of trials were framed as a test (threat) and 4 as practice (nonthreat). Regardless of motivational condition, both age groups improve after feedback, and adults outperform adolescents. However, at post-test, adolescents achieve the same percent correct as adults for items previously answered incorrectly, having corrected significantly higher numbers of errors under threat. Feedback engages the same brain network in both age

Flux Congress Oral Presentations

groups, including striatum, mPFC, and PCC. Under threat, adolescents exhibit higher activation to feedback in amygdala, hippocampus, insula, and mPFC. ROI analyses identified age x threat interactions in nucleus accumbens, caudate, amygdala, and hippocampus, suggesting age-related differences in the effects of the motivation manipulation. Further analyses will examine relationships between these results and individual differences in achievement motivation.

Alyssa Kersey, University of Rochester

S.1.2. Neural patterns of reading and mathematics development from controlled versus naturalistic stimuli

Patterns of neural activity evoked by stimuli in well-controlled tasks are important for isolating the neural substrates of cognitive functions. However, that approach may not be ideal for measuring individual variability in neural functioning over development. Our study compares children's neural responses to reading and mathematics stimuli in controlled tasks versus naturalistic educational videos using functional magnetic resonance imaging (fMRI). First, we measure neural activation from 4- to 8-year-old children during controlled mathematics and reading tasks and compare those patterns to activations that relate to individual variability in mathematics and reading. Next, we compare activation patterns elicited by controlled tasks with those related to natural viewing of educational videos. The data show dissociations between the functional networks underlying reading versus mathematics. Within those networks some regions show uniform patterns of activation over development whereas others show robust individual variability related to cognitive development in each domain. This suggests that the naturalistic and controlled stimulus approaches provide distinct but complimentary information about neural development. These results are important for understanding children's cognitive and neural development in the real world.

Wouter van den Bos, Max Planck Institute for Human Development

S.1.3. Navigating Uncertainty: Neural Correlates of Decisions form Experience in Adolescence

Despite the increased prevalence of adolescent risk-taking behavior in the real world, laboratory evidence of adolescent specific risk taking propensity remains scarce. In contrast with the lab, in the real world adolescents often have only incomplete information about risks, but may have the opportunity to gather more information before they decide. There is currently very little known about how adolescents make decisions under these uncertain conditions. To address this issue we studied how adolescents make decisions based on experience. In a large behavioral study (N=105, ages 8-22) we found adolescents searched for less information before making a decision, were less averse of uncertainty, and made more risky decisions. In a follow up fMRI study, comparing adults (N=25, ages 18-25) and adolescents (N=30, ages 11-15), we focused on the processes involved in learning probabilities through experience and subsequent decisionmaking. Again, we found that adolescents were less skilled in

learning probabilities and were more risk-seeking. Furthermore, we found that the VMPFC is encoding the uncertainty during learning and decision-making. However, this was not the case for the adolescents. This suggests that adolescents may not take the uncertainty associated with their choices into account. This hypothesis was further supported by our finding that adolescents self-reported confidence was not well calibrated. This research provides important new insights in the role of learning processes that contribute to increased risk-taking in adolescence.

Science of Learning Symposium: Part 2

Jason Yeatman, University of Washington

S.2.1. The neural circuitry of skilled reading

Quantitative neuroimaging measurements have generated new insights into the neurobiology of learning and provided a means to understand the mechanisms underlying individual differences in academic performance. For example, learning to read depends on communication between visual, auditory and language processing circuits. The white matter tracts that carry signals between these regions are critical for skilled reading. We find that the dynamics of an individual's white matter development predicts their acquisition of reading skills and that this biological process can be influenced through targeted behavioral interventions. These findings pave the way for conversations between education and neuroscience on how to optimize reading instruction with respect to brain development.

Daniel Ansari, University of Western Ontario

S.2.2. Number Symbols and the Developing Brain

Numerical symbols are a recent cultural invention. I will review what has been learned from developmental cognitive neuroscience research about the way in which numerical symbols are represented in the brain and mind. I will examine what is known about developmental changes in the brain representation of number symbols and how individual differences in symbolic number processing skills (such as mental arithmetic) relate to variability in brain activation during symbolic number processing and the educational implications thereof. Finally, I will discuss several future directions for research on the brain's representation of number symbols.

John Gabrieli, MIT

S.2.3. Education Neuroscience

Education neuroscience aims to understand the brain basis of learning that supports academic achievement. I will summarize a number of studies in which we have examined brain differences associated with difficulty in learning to read (dyslexia) and with the relation of socioeconomic status (family income, parental education) to performance on statewide standardized tests that are widely used to assess academic achievement.

Huttenlocher Lecture

Michael Posner, University of Oregon Brain Changes with Development and Training

During development connectivity improves particularly between remote brain areas. Adults respond much faster than children probably related in part to this improved connectivity. Children and adults also improve in reaction time with practice on the task. For adults, we have shown that a month of mental training with meditation results first in improved axial diffusivity and later radial diffusivity. In this lecture we examine similarities and differences between development and training in the brain mechanisms related to the speed of responding.

Friday, September 9

Oral Session 2: NeuroLaw Symposium

Discussant: Kim Taylor Thompson, NYU Law

Jason Chein, Temple University

0.2.1. Development of the social brain and the peer influence on adolescent crime

Unlike their adult counterparts, adolescents are more likely to commit both violent and non-violent crimes when in the presence of their peers. While this phenomenon has traditionally been explained in terms of affiliation patterns and explicit peer pressure, our work has explored how structural and functional brain development might account for the increase in social influence observed during adolescence. In this talk, I will discuss findings regarding the links between structural development and sensitivity to social information, and how development impacts activation and functional connectivity as adolescents render decisions about the potential risks and rewards of their actions.

Ali Cohen, Sackler Institute

O.2.2. When is adolescent an adult?

The age of adulthood varies for different legal and social policies. We assessed cognitive control in neutral and emotionally arousing situations, which may be relevant to these policies. Eighteen- to 21-year-olds showed diminished performance, relative to adults over 21, under brief and prolonged negative emotional arousal. Differences in performance were paralleled by decreased activity in fronto-parietal circuitry, implicated in cognitive control, and increased sustained activity in the ventromedial prefrontal cortex, involved in emotional processes. These findings suggest a developmental shift in cognitive capacity under negative emotion that coincides with dynamic changes in prefrontal circuitry and may inform age-related policies.

Adrianna Galvan, University of California, Los Angeles

O.2.3. Risk Triangle: The combined effects of peer presence, social cues and rewards on cognitive control capacity in adolescents

The developmental science literature has examined the independent contextual effects of peer presence, social cues and rewards on adolescent decision-making and cognitive control. Yet, these contextual factors often co-occur in real world social situations for teens. The current study examined the combined effects of all three factors on cognitive control capacity and underlying neural circuitry using a task with experimental manipulations that may better capture real world interactions. A community sample of 176 participants (71 adolescents, 48 young adults, and 57 adults) from Los Angeles and New York City were scanned while performing an emotional go/no-go task alone or in the presence of a virtual peer, matched in age and gender.. The task included brief social cues and sustained periods of arousal (e.g., anticipation of winning money). Compared to older age groups, adolescents showed diminished cognitive control capacity to positive social cues when anticipating reward in the presence of peers than when alone. This behavioral pattern was paralleled by enhanced orbitofrontal activation in the adolescent group relative to the older age groups. Together, the results suggest a common neural and behavioral effect of social and reward influences on cognitive control capacity in adolescents and that prior studies may be underestimating the impact of peers on this capacity in real world situations for teens.

Oral Session 3: Infant Development Symposium

Discussant: Joel Nigg, Oregon Health & Science University

Alice Graham, Oregon Health & Science University O.3.1. Towards an Increased Understanding of Prenatal Influences on Neurodevelopment

Identifying prenatal influences on brain development is of critical importance for understanding risk for psychiatric disorders and potential for preventive intervention. We have examined the influence of prenatal stress and nutrition on the newborn brain, and cognitive and emotional development through 24-months-of-age. The results suggest the importance of considering specific stress-sensitive aspects of maternal-placental-fetal (MPF) biology, such as the proinflammatory cytokine interleukin-6, which we have found to be associated with newborn amygdala volume and connectivity. The results also highlight the utility of modeling approaches which allow for inclusion of a broad range of prenatal influences to predict neurodevelopment through 24months-of-age.

John Gilmore, University of North Carolina

0.3.2. Brain structure and cognitive development in early childhood

Early childhood is a period of rapid development of brain structure and cognitive function, though very little is known about structure-function relationships during this time. The

Flux Congress Oral Presentations

UNC Early Brain Development Study is a longitudinal imaging study of brain development from birth to age 6 years in typically developing children, children at high risk for psychiatric disorders, and twins. Major patterns of gray and white matter development in the first years of life will be reviewed, and new information about the relationships between cortical gray and white matter growth and cognitive development at ages 1 and 2 years will be presented.

Sean Deoni, Brown University

0.3.3. The Developing Brain : MRI Assessments of structural and Functional Development

How does the healthy brain grow? Across the first 1000 days of a child's life (from conception to age 2) and throughout early childhood, the brain undergoes remarkable change in response to diverse genetic and environmental pressures. This age span encompasses the most rapid period of brain growth, and coincides with the emergence of nearly all fundamental cognitive and behavioral skills. Activitydependent processes such as synaptogenesis, synaptic pruning, and myelination help shape the neural systems that underlie these functions; with deviations associated with a spectrum of cognitive and behavioral abnormalities. Magnetic resonance imaging allows the characterization of complementary aspects of tissue maturation, including cortical morphology, white matter microstructure, tissue fibre architecture, as well as brain function and connectivity. Adopting these techniques for use in pediatric populations, salient new insight into brain maturation, including timelines of development, relationships between evolving brain structure and cognitive function, and potential alterations in specific disorders, can be elucidated. In this talk, we will highlight results from on-going longitudinal studies of fetal, infant, and early child neurodevelopment, specifically looking at patterns of development and their relationship to evolving cognitive functioning. Further, we will broadly examine potential environmental influences that affect early development.

Oral Session 4: Translational Animal Models Symposium

Discussant: Nim Tottenham, Columbia University

Regina Sulivan, NYU School of Medicine

0.4.1. Caregiver Influence Over the Infant Brain and Behavior

In many mammalian species, including humans and rodents, the caregiver regulates the infant brain to alter brain and behavior. Here we use rodent mother-infant interactions to illustrate maternal influence over pup brain activity using ecologically relevant examples of how the attachment figure defines brain activity and social signals. This work illustrates how learned cues from the mother influence neurobehavioral processing of fear and safety in infancy, but also how poor quality infant attachment to the mother compromises this maternal influence.

Mar Sanchez, Emory University

O.4.2. Early Maternal Care Regulates the Development of Emotional Behavior and Neurocircuitry: a Nonhuman Primate Model

Early life stress, including adverse experiences such as child maltreatment, lead to increased risk for psychopathology. Evidence from a translational macaque model of infant maltreatment shows negative developmental impacts on social behavior, emotional and stress regulation, and the developmental trajectory of underlying cortico-limbic circuits. Using a crossfostering, randomized, design to disentangle experience from heritability effects and longitudinal neuroimaging approaches we have detected reduced prefrontal-amygdala connectivity, resulting in impaired fear regulation in maltreated animals during adolescence. Nonhuman primates are unique animal models to examine neurodevelopmental underpinnings and sensitive periods of early adverse experiences of translational value for humans.

Shannon Gourley, Emory University

O.4.3. Developmental factors in toggling between actions and habits: Effects of adolescent adversity and relation to depression-like behavior

The prefrontal cortex undergoes structural reorganization and refinement during adolescence. This plasticity may open a window of vulnerability to insults and the development of neuropsychiatric illnesses such as depression. I will discuss evidence collected from both male and female mice that deep-layer excitatory prefrontal cortical neurons remodel considerably in response to social isolation or stress hormone exposure in adolescence. Further, some neural subsets fail to recover by adulthood. Aberrant neural structures are associated with anhedonic-like behavior and a propensity to engage reward-seeking habits in adulthood. Identification of associated factors such as Rho-kinase signaling may elucidate novel mechanisms of, and therapeutic approaches to, neuropsychiatric disease.

Saturday, September 10

Oral Session 5: ABCD Symposium

Discussant: Ted Satterthwaite, University of Pennsylvania

Nico Dosenbach, Washington University in St Louis **0.5.1. Real-time motion analytics during brain MRI improve data quality and reduce costs**

Even sub-millimeter movements of the head between measurements systematically distort MRI data, especially functional connectivity metrics. Motion-driven distortions can be removed by excluding data frames with > 0.2 mm framewise displacement (FD) relative to the previous data frame. While effective, post-hoc frame censoring can lead to data loss rates of up to 50%, forcing MRI researchers to collect large amounts of buffer data, to decrease the risk of having to exclude entire subjects because of insufficient lowmovement data. Even when using this very expensive 'overscanning' approach, researchers will still have to exclude some subjects from their final cohorts because of excessive head motion. Therefore, we developed an easy-to-setup, easy-to-use fMRI Integrated Real-time Motion Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the required amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the scanning sweet spot that provides the required amount of low-movement data at the lowest cost can reduce scan times and associated costs by 50%.

Terry Jernigan, University of California, San Diego

0.5.2. Overview of the ABCD Study

This presentation will provide an overview of the Adolescent Brain Cognitive Development (ABCD) Study focusing on its administrative and operational structure, the recruiting strategy and target cohort characteristics, and on the methods for assessing development, health, and behavioral characteristics of the participants. Plans for resource sharing with the wider research community will be described and opportunities for leveraging ABCD in future research will be highlighted.

Anders Dale, University of California, San Diego

O.5.3. Harmonized Human Connectome Protocols for the ABCD Study

The imaging protocols to be applied in the ABCD Study build on the Human Connectome Lifespan protocol and have been enhanced and harmonized across GE, Siemens, and Philips scanners. Specific enhancements include real-time motion estimation and correction, protocol compliance checking, and advanced diffusion MRI acquisitions and analysis methods. All raw- and derived data, along with associated computational analysis pipelines, will be freely shared with the research community.

Oral Session 6: Parcellating the Human Brain Symposium

Discussant: **Steve Petersen**, Washington University in St Louis

Evan Gordon, VISN 17 Center of Excellence (VISN CoE)

O.6.1. Boundary-based parcellation of human cerebral cortex using functional connectivity MRI

The human cerebral cortex is organized into a large number of interacting cortical areas with discrete patterns of architectonics, connectivity, and function. Abrupt transitions in fMRI resting state functional connectivity patterns can noninvasively identify locations of putative borders between cortical areas. Here, we used this "boundary mapping" technique to generate and evaluate discrete cortical parcels in a group of healthy adults. Connectivity patterns of the resulting parcels were highly homogenous when compared to a permutation-based null model, and specific parcels conformed to known cytoarchtectonically-defined cortical areas. This boundary-based parcellation may thus represent a highly useful set of a priori ROIs.

David Van Essen, Washington University in St Louis **0.6.2. A multimodal parcellation of human cerebral cortex**

Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semiautomated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. The parcellation includes 97 new areas and 83 areas previously reported using specialized study-specific approaches. A machine-learning classifier trained to recognize the multi-modal 'fingerprint' of each cortical area enabled automated and reliable identification of these areas in new HCP subjects and could correctly locate areas in individuals with atypical parcellations. The parcellation and associated datasets are shared freely via the BALSA database.

Oral Session 7: Large Scale Networks Symposium

Discussant: Olaf Sporns, University of Indiana

Martijn Van Den Heuvel, University Medical Center Utrecht, The Netherlands

0.7.1. Richness of the human brain network

Using network science as a general framework to study the network of connectivity our brain -the human connectome, more and more studies have highlighted the human brain to display features of an efficient communication network, showing cost-effective wiring, pronounced community structure, short communication relays, and the existence of richly connected 'hub regions'. In my talk, I will highlight and discuss recent findings of a 'rich club organization' of the human connectome, discussing the important role of a densely connected 'rich club' core in brain systems, suggesting the existence of a selective group of high-degree hub regions to form a densely connected backbone of neural connectivity in the brain; a system argued to be crucial for bringing integration among segregated brain systems. I will discuss a potential 'richness' of this club at different scales of brain organization and discuss the early emergence of the rich club in the neonatal brain. Furthermore, I will discuss findings of changes in connectome wiring and structure across brain development and the lifespan, as well as discuss how deviating growth of connectome and rich club organization may form an important factor in the aetiology of neurodevelopmental disorders, in particular brain disorders that are characterised by a disruption of integrative brain processes, such as schizophrenia.

Flux Congress Oral Presentations

Alex Fornito, Monash University, Australia

0.7.2. Genetic and developmental influences on large-scale brain networks

Some brain regions posses a large number of connections and act as network hubs. These hubs support the integration of distributed neural systems, but can also represent potential points of vulnerability in disease. This talk will present evidence to indicate that hubs are topologically central elements of brain networks that carry a high metabolic and physical cost. This cost defines the transcriptional signature of hub connections, and is a heritable property of hub connectivity. Although hub connectivity is established early in development, it continues to be remodeled throughout late adolescence, coinciding with a period of peak risk for many psychiatric disorders.

Danielle Bassett, University of Pennsylvania

0.7.3. Evolution of brain network dynamics in neurodevelopment

Cognitive function evolves significantly over development, enabling flexible control of human behavior. Yet, how these functions are instantiated in spatially distributed and

dynamically interacting networks or graphs that change in structure from childhood to adolescence is far from understood. Here, we apply a novel machine learning method to track continuously overlapping and time-varying subgraphs in the brain at rest within a sample of 200 healthy youth (aged 8-11 and 19-22) drawn from the Philadelphia Neurodevelopmental Cohort. We uncover a set of subgraphs that capture surprisingly integrated and dynamically changing interactions among known cognitive systems. We observe that subgraphs that are highly expressed are especially transient, flexibly switching between high and low expression over time. This transience is particularly salient in a subgraph predominantly linking fronto-parietal regions of the executive system, which increases in both expression and flexibility from childhood to young adulthood. Collectively, these results suggest that healthy development is accompanied by a greater precedence of executive networks and a greater switching of the regions and interactions subserving these networks.

Podium CONFERENCE SPECIALISTS

We specialize in planning, organizing and delivering exceptional international scientific, academic and research conferences.

Podium offers effective and efficient conference management solutions through a range of conference tools, conference planning, and conference marketing services.

Conference Management, Planning and Delivery

From idea conception through to conference delivery and the post review stage, we are here to help you deliver an outstanding conference.

Website Design, Hosting & Maintenance

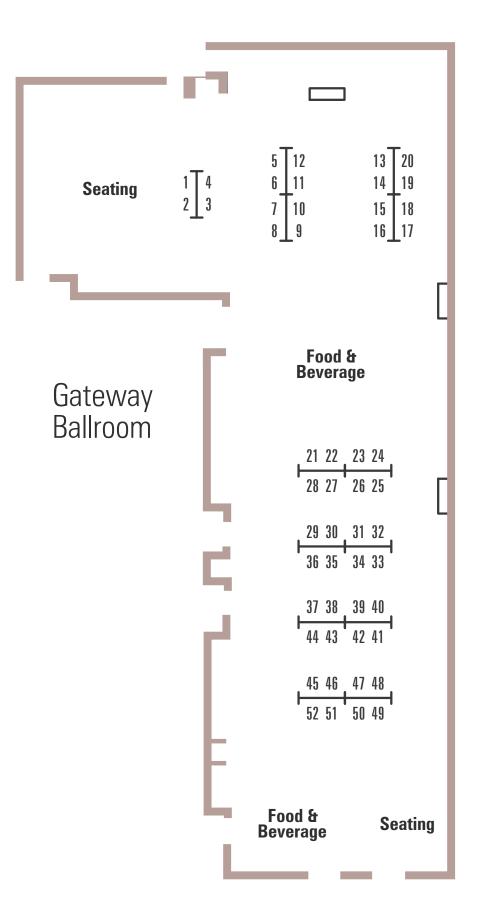
Our conference website service engages with your conference to focus on creating a comprehensive and specialized website designed to describe, promote and generate conference leads and reach your audience.

Online Registration, Abstract, Membership and Exhibit Booth Management

With our range of conference tools, you will be able to find efficient solutions to that save precious administrative and volunteer hours, freeing up your staff to focus on other critical areas.

A DIVISION OF De Armond Management

To learn more about us or to secure our services for your conference or organization, please call 1 800 472-7644 or e-mail us: office@podiumconferences.com.


Visit us online at www.podiumconferences.com

Association Management

We provide your association with the ability to focus on core responsibilities and roles related to organizational growth while a system is in place to manage the daily affairs and activities.

Flux Posters Floor Plan | Second Floor Convention Level

Flux Congress Poster Author Index

Poster Session 1 Thursday September 8 12:30–2:00 PM

Poster Session 2 Friday September 9 1:00–3:00 PM

Poster Session 3 Saturday September 10 12:15–1:45 PM

Poster board numbers are indicated as follows:

Poster Session – Theme – Board Number (Example: 2-A-10) Location of the individual poster boards are indicated on poster board floor plans following the poster author index list. Poster set up and removal is the responsibility of the presenter. Please have your poster set up no later than 8:30 AM on your scheduled

presentation day and removed by 5:15PM each day. For those presenting on Saturday, please remove your poster by 2:00pm.

Any posters not removed by the designated time will be held at Registration until 3:00 PM on Saturday.

Themes

- A Cognition
- **B** Decision Making
- C Functional/Structural Neuroanatomy
- D Motivation/Affect
- E Neurotransmitter Function
- F Learning
- G Clinical Populations

For a complete list of poster abstracts please visit **www.fluxsociety.org**

Author	Poster No.	Author	Poster No.	Author	Poster No.
Abi Akar, N	1-B-17	Becker, S	3-A-10	Caldera, C	3-D-45
Abrams, D	2-D-36	Belden, A	1-D-44	Callaghan, B	1-F-48
Achterberg, M	2-D-35,3-D-44	Bellgrove, M	2-G-50	Camacho, C	2-D-43
Ackerman Jr., J	3-A-5	Berg, J	2-C-29	Camarda, A	1-D-35
Adamson, C	1-C-30, 2-G-50, 3-C-20	Berkman, E	2-D-41	Canada, K	2-A-1
Aite, A	1-A-1	Bernal, B	3-C-25	Caouette, J	2-C-22
Akbar, S	1-C-20	Bilo, E	3-D-44	Carlson, S	2-C-26
Alberti, S	1-B-15, 1-B-16, 1-D-43,	Blankenship, S	2-C-21	Casey, B	1-A-3, 3-D-40
	3-B-13,3-B-17	Blankenstein, N	2-B-14, 2-D-44	Cassotti, M	1-A-1, 1-D-35, 3-D-43
Alexander, B	3-C-20	Bolt, T	1-C-32	Cataldo, J	1-A-2
Allen, N	3-C-31	Bonnie, R	1-A-3	Cejudo Garcia, A	3-C-22
Almy, B	2-B-13	Borst, G	1-A-1, 1-D-35, 3-A-11,	Chahal, R	3-C-23
Altman, N	3-C-25		3-D-43, 3-F-46	Chang, T	1-A-4
Alves, M	1-C-31	Botdorf, M	2-B-18	Chein, J	1-A-3, 2-B-18, 2-C-23
Amso, D	1-F-46,2-D-39	Bouhours, L	1-D-35	Chen, J	1-C-30, 3-C-20
Anbari, Z	2-C-32	Braams, B	1-B-13, 2-D-44, 3-A-6	Cheng, T	1-B-15, 1-D-43
Anderson, P	3-C-20,1-C-30	Bradley, C	3-C-25	Cheong, J	1-C-30, 3-C-20
Anderson, V	1-G-51	Breheny, R	2-A-12	Cherry, B	3-B-15
Askren, K	3-G-51	Breiner, K	1-A-3, 2-C-23	Cherry, J	2-A-8
Aslin, R	1-A-2	Broce, I	3-C-25	Choi, I	2-C-26
Aïte, A	3-D-43	Brooks, W	2-C-26	Chow, W	2-A-12
B.Hatfield, J	1-C-29	Bruce, A	3-B-15	Chung, Y	3-G-49
Baez, N	3-C-25	Bruce, J	3-B-15	Chung, Y	3-A-3
Bajo Molina, M	3-C-22	Bryce, N	1-B-14	Church, J	1-A-12, 1-F-47, 2-A-4
Baker, A	2-D-36	Bullins, J	1-C-20, 3-A-2	Cicchetti, D	2-D-37, 3-C-28
Baker, E	1-G-49	Bulthé, J	2-A-10	Cichy, R	1-A-2
Bakermans-Kranenbu	rg, M 2-D-35	Bunge, S	2-A-5	Cillessen, A	3-B-19
Ball, G	2-C-20	Burkart, D	3-B-15	Cillessen, A	2-C-33
Banich, M	3-A-1	Burrows, C	3-D-42	Clark, M	1-A-9
Barch, D	1-C-28, 1-D-37, 1-D-44,	Buss, C	2-C-30, 2-C-31, 3-C-21	Coalson, R	2-C-29
	1-G-50, 2-G-51, 3-D-41	Busso, D	1-D-36	Cohen, A	1-A-3
Batalle, D	2-C-28	Bustamente, C	1-A-6	Cohen, S	3-C-24
Baumgartner, H	1-F-46	Cabrera, L	3-C-25	Colich, N	1-D-39, 3-D-35
Bayet, L	1-A-2	Cadoret, G	1-A-11	Colombo, J	2-C-26
Beare, R	1-C-23, 1-C-30, 1-G-51, 2-G-50, 3-C-20, 3-C-31	Calabro, F	1-C-21, 1-C-27, 2-C-24, 2-G-52, 3-A-8	Constable, R	3-C-24

Author	Poster No.
Cooper, D	2-C-30
Cosme, D	2-D-41
Courtier, P	3-A-11
Cowell, R	2-D-37
Cowell, R	3-C-28,1-C-25
Crespo, L	1-C-29
Crone, E	3-D-44,2-B-14
Crone, E	2-D-35, 2-D-44, 3-A-6
Cross, S	3-C-24
Custers, R	1-D-41
Cutting, L	3-A-1
Dajani, D	2-A-2, 3-D-42
Damasio, H	2-F-47
Dapretto, M	1-B-19
Darcey, V	1-C-22, 2-B-19
Davidow, J	1-A-6, 1-B-13, 3-D-36
De Feria, A	3-C-25
De Smedt, B	2-A-10
Dellarco, D	1-A-3
DeMaster, D	1-F-47
Demers, L	2-D-37
Demir, O	3-F-47
Dennison, M	1-A-10, 1-D-36, 2-C-25
Der Sarkissian, A	2-A-3
Deschner, L	1-A-12, 1-F-47
Dick, A	3-C-25
Dinakar, K	2-G-49
DiStefano, C	1-G-49
Do, K	3-B-12
Dosenbach, N	2-C-29, 3-G-50
Dougherty, L	2-C-21
Doyle, L	1-C-30, 3-C-20
Drazen, C	3-G-50
Drysdale, A	1-B-17
Dumontheil, I	1-D-41, 2-A-12
Durnin, M	3-B-17
Edwards, D	2-C-28
Efron, D	1-G-51
El Damaty, S	1-C-22, 2-B-19
Emberson, L	2-F-46
Engelhardt, L	2-A-4
Entringer, S	2-C-30, 2-C-31, 3-C-21
Epstein, J	3-A-10
Euser, S	2-D-35
Everett, E	3-G-50
Ezie, C	1-C-32
Fair, D	1-A-3, 2-C-31, 3-C-21
Falcone, G	3-B-18
Ferguson, H	2-A-12
Ferreira, T	1-C-31
Fettich, K	2-B-18, 2-C-23

Author	Poster No.
Fishbein, D	1-C-22, 2-B-19
Fisher, P	1-B-15, 1-B-16, 1-D-43, 3-B-17, 3-B-13
Flannery, J	1-B-15, 1-B-16, 1-D-43, 3-B-13, 3-B-17, 3-D-45
Flournoy, J	1-B-15, 1-D-43, 3-B-13, 3-B-17
Foran, W	1-A-5, 2-C-24, 2-D-42
Forbes, E	2-C-22, 2-C-34, 3-C-23, 3-C-26
Fournoy, J	1-B-16
Fowler, B	3-A-10
Franz, P	2-G-49, 3-D-40
Frithjof, K	2-C-30
Gabard-Durnam, L	3-D-42, 3-D-45
Galvan, A	1-A-3, 1-B-18, 1-C-34, 2-C-23, 3-B-14
Garrad, M	1-B-17, 3-D-37
Gee, D	3-D-45
Gee, D	3-D-42
Geier, C	3-D-39
Gelardi, K	2-D-45, 3-C-26
Genc, S	1-C-23
Geng, F	1-C-24, 2-A-1
Ghuman, A	1-A-5
Gibbs, A	3-C-28
Gilbert, K	1-D-37, 1-D-44
Gillis, A	3-C-26
Gilmore, A	2-C-29
Gilmore, J	1-C-20, 2-C-30, 3-A-2, 3-C-21
Glenn, C	3-D-37
Goff, B	3-D-45
Goldenberg, D	3-B-14,1-C-34
Goldin-Meadow, S	3-F-47
Goldman, B	3-A-2,1-C-20
Gonçalves, Ó	1-C-31
Gotlib, I	1-D-39, 2-D-43, 3-D-35
Grabell, A	1-D-38
Graham, A	2-C-31, 3-C-21
Greene, D	2-C-29, 3-C-30
Greenfield, P	1-B-19
Grimm, K	3-C-23
Guarino, K	3-A-9
Guassi Moreira, J	2-B-17, 2-D-38
Guerra-Carrillo, B	2-A-5
Gunnar, M	1-C-25
Guroglu, B	3-B-19
Gustafson, K	2-C-26
Guyer, A	2-C-22, 2-C-32, 2-C-34, 2-D-45, 3-C-23, 3-C-26
На, О	3-B-15

Author	Poster No.
Habibi, A	2-A-3, 2-F-47, 3-C-32
Hajcak, G	3-D-38
Harden, K	2-A-4
Hartley, C	1-B-14
Hastings, P	2-C-32, 2-D-45
Hawkey, E	1-G-50
Hawks, Z	3-C-27
Hay, J	1-D-35
Hazell, P	1-G-51
Hect, J	3-A-7, 3-C-33
Heim, C	3-C-21
Heller, A	1-C-32
Hernandez, G	3-C-25
Hernandez, L	1-B-19
Hershey, T	3-C-29
Herzberg, M	1-C-25
Herzmann, C	1-C-26
Hippwell, A	2-C-34
Hipwell, A	2-C-22, 3-C-26, 3-C-23
Hodel, A	1-C-25
Holland, S	1-C-23
Honea, R	2-C-26
Hood, A	3-C-27
Норре, М	3-A-11
Hosseini-Kamkar, N	3-B-16
Houde, O	1-A-1
Houdé, O	1-D-35, 3-A-11, 3-D-43,
	3-F-46
Hoyt-Drazen, C	2-C-29
Huettel, S	3-A-6
Humphreys, K	3-D-35, 3-D-45
Hunt, R	1-C-25, 2-D-37, 3-C-28
Huppert, T	1-D-38, 2-A-9
Hyatt, C	3-A-3
Hyde, D	2-A-6
Icenogle, G	2-C-23
Infantolino, Z	3-D-38
Insel, C	1-B-17,3-A-4,3-D-40,3-D-37
luculano, T	1-A-4,2-F-48
Jalbrzikowski, M	2-C-24
Jedd McKenzie, K	2-D-37, 3-C-28
Jenness, J	1-A-10, 1-D-36, 2-C-25
Jeste, S	1-G-49
Jha, S	1-C-20
Johnson, K	3-C-31
Juranek, J	1-F-47
Kang, J	2-A-5
Kaplan, J	3-C-32
Kastman, E	3-A-4, 3-D-37
Keenan, K	2-C-22, 2-C-34, 3-C-23
Kelly, C	1-C-30, 3-C-20

Flux Poster Author Index | By Author Name

Author	Poster No.
Kelly, C	3-A-10
Kenley, J	1-C-26, 1-C-33, 3-A-5
Kennan, K	3-C-26
Kennea, N	2-C-28
Kersey, A	2-F-46
Kim, H	1-D-45
King, L	1-D-39, 3-D-35
Knickmeyer, R	3-A-2
Kober, H	3-B-18
Koller, J	2-C-29, 3-G-50
Kuskowski, M	2-B-13
Kwon, S	3-C-24
Lacadie, C	3-C-24
Lambert, H	1-D-42, 3-G-51
Larsen, B	1-C-27, 2-C-24
Laube, C	2-B-15
Laumann, T	2-C-29
Lean, R	3-A-5
Lee, P	2-C-26
Lee, T	1-D-40
Leemans, A	1-C-30
Leibenluft, E	2-G-51
Lemoult, J	1-D-39
Leopold, D	3-A-1
Lepping, R	2-C-26
Lerman-Sinkoff, D	3-C-27
Levine, S	3-F-47
Lewkowicz, D	1-F-46
Li, A	1-A-3
Li, G	1-C-20
Li, R	3-A-6
Liao, K	2-C-26
Lim, S	3-B-15
· · · · · · · · · · · · · · · · · · ·	
Linzarini, A	1-A-1 1-C-31
Lisboa, I Llabre, M	2-A-2
Loh, W	1-C-30, 3-C-20
Lopez, K	1-C-28
Lorenz, R	2-B-15
Louie, J	3-D-45
Luby, J	1-C-28, 1-D-37, 1-D-44, 1-G-50,2-G-51, 3-D-41
Luciana, M	2-B-13
Luking, K	1-D-37, 3-D-38
Luna, B	1-A-5, 1-C-27, 1-C-21, 2-C-24,2-D-42, 2-G-52, 3-A-8
Lydon, D	3-D-39
Lynn, A	2-D-39
MacGillivray, C	2-A-9
Machlin, L	3-G-52,2-C-27
Mackey, E	2-A-8

Author	Poster No.
Magis-Weinberg, L	1-D-41
Magnotta, V	1-G-52
Malone, S	2-B-13
Maloney, T	3-A-10
Malpas, C	1-C-23, 1-G-51, 2-G-50
Manning, J	3-A-7, 3-C-33
Marek, S	1-A-5
Marin, A	1-G-49
Marshall, N	1-C-29, 3-A-7, 3-C-33
Martin, K	1-C-22, 2-B-19
Martin, L	2-C-26
Martin, R	3-D-40
Martinez, J	1-A-12
Marusak, H	1-C-29
Mattarella-Micke, A	2-A-7
Matthews, L	3-C-20,1-C-30
McBride, J	1-A-12
McCandliss, B	2-A-7
McCormick, E	2-B-16
McCormick, E	3-B-12
McDermott, K	2-C-29
МсКау, Е	3-C-28
McLaughlin, K	1-A-10, 1-D-42, 1-D-36, 2-C-25, 2-D-40, 2-C-27, 3-G-51
Melnik, J	3-A-11
Menon, V	1-A-4,2-D-36,3-F-48,2-F-48
Ment, L	3-C-24
Metcalfe, A	1-A-4
Metzger, A	1-G-52
Meyer, K	1-A-6
Miernicki, M	1-D-40
Miguel, H	1-C-31
Miles, Z	1-A-10
Miller, A	2-D-40
Minhas, D	1-C-27
Mischel, W	3-D-40
Mitsven, S	2-F-48
Mobasser, A	1-B-15, 1-B-16, 1-D-43, 2-D-41, 3-B-13, 3-B-17
Montagna, A	2-C-28
Montez, D	2-D-42, 3-A-8
Moraczewski, D	1-A-7
Morton, J	3-B-16
Mostofsky, S	2-A-2
Mulligan, E	1-A-9, 1-C-24
Murphy, E	3-D-41
Murphy, M	2-A-9
NAUMON A	3-C-20
Murray, A	
Murty, V	1-C-21, 2-D-42

Author	Poster No.
Nadler, E	2-A-8
Nebel, M	2-A-2
Nelson, B	3-D-38
Nelson, C	1-A-2
Nelson, S	2-C-29
Neyman, O	3-C-29
Nguyen, A	2-C-29, 3-G-50
Nicholas, J	3-F-48
Nicholson, J	1-G-51
Niebaum, J	1-A-8
Nielsen, A	3-C-30
Niermann, H	2-C-33
Nock, M	2-G-49
Nomi, J	1-C-32
Nook, E	1-D-42, 2-G-49
Nopoulos, P	1-G-52
Nosarti, C	2-C-28
O'Muircheartaigh, J	2-C-28
O'Sullivan, K	1-F-48
Ochsner, K	3-D-40
Odriozola, P	2-A-2,3-D-42,2-D-36
Olafsson, V	1-C-27
Olson, A	2-A-8
Op de Beeck, H	2-A-10
Op de Macks, Z	3-B-17
Ordaz, S	2-D-43, 3-D-35
Ortega Segura, A	3-C-22
Ortega, M	2-C-29
Osmont, A	1-A-1, 1-D-35
Padmanabhan, A	2-D-36
Pagliaccio, D	1-D-37, 2-G-51
Paquet, A	1-A-11
Patrianakos, J	2-B-18
Peake, S	1-B-15, 1-B-16, 1-D-43, 3-B-13, 3-B-17
Pearce, A	2-A-8
Peper, J	2-B-14, 2-D-44
Perino, M	2-B-17
Perlman, S	1-D-38, 2-A-9
Peters, C	1-C-29
Peters, L	2-A-10
Peters, S	3-A-6
Petersen, S	3-C-30,2-C-29
Petrill, S	3-A-1
Peverill, M	1-D-36,2-D-40
Pfeifer, J	1-B-16, 1-B-15, 1-D-43,
	2-D-41, 3-B-13, 3-B-17,
Phuong, J	1-B-18
Pine, D	2-G-51
Popolizio, M	2-D-43
Powels, L	2-C-33

Author	Poster No.
Powers, A	3-D-40
Powers, K	3-B-18
Preston, A	3-A-9
Price, A	2-D-43
Price, J	1-C-27
Pruitt, S	3-B-15
Pruitt, Z	1-A-2
Ragan, D	3-G-50
Rasmussen, J	2-C-30, 2-C-31, 3-C-21,
Redcay, E	1-A-7
Rees, S	3-C-20
Reineberg, A	3-A-1
Richeson, J	1-A-3
Richmond, S	3-C-31
Riggins, T	1-A-9,1-C-24,2-A-1,2-C-21
Roberts, N	2-A-11
Robins, R	2-D-45
Rodman, A	3-A-4
Roe, M	1-F-47
Roelofs, K	2-C-33
Rogers, C	1-C-26, 1-C-33, 3-A-5
Rogosch, F	2-D-37, 3-C-28
Rose, E	1-C-22, 2-B-19
Rosen, M	1-A-10, 1-D-36, 2-C-25,
Decemberry C	3-G-51
Rosenbaum, G	2-B-18
Rudolph, M	1-A-3, 2-C-31, 3-C-21 2-C-28
Rutherford, M	
Rutlin, J Sachs, M	<u>3-C-27</u> <u>3-C-32</u>
•	<u> </u>
Sala-Hamrick, K	
Sambrook, K	1-A-10, 2-C-25, 3-G-51 1-C-31
Sampaio, A Sasse, S	1-B-17, 1-D-42, 3-D-37, 3-A-4
Sauder, C	3-D-38
Savvatia Asaridou, S	3-F-47
Scheinost, D	3-C-24
Schlaggar, B	2-C-29, 3-C-30
Schlichting, M	3-A-9
Schreuders, L	3-B-19
Schriber, R	2-C-32
Sciberras, E	1-G-51
Scott, E	1-A-3
Seal, M	1-C-30, 3-C-20,3-C-31
	1 0-00, 0-0-20,0-0-01

Author	Poster No.
Shapiro, M	3-D-45
Shen, D	1-C-20
Sheridan, M	1-A-6, 1-D-36, 1-A-10, 2-C-25, 2-C-27, 2-D-40, 3-D-36, 3-G-52, 3-G-51
Sherman, L	1-B-19
Shi, T	1-B-14
Shimony, J	1-C-26, 2-C-29, 3-C-29, 3-C-34, 3-A-5, 3-C-27
Short, S	1-C-20, 3-A-2
Silk, T	1-C-23, 1-G-51, 2-G-50
Silvers, J	1-F-48, 3-D-40
Simard, F	1- A -11
Simmonds, D	2-C-24
Skwara, A	3-A-4
Small, S	3-F-47
Smeekens, S	3-B-19,2-C-33
Smith, A	2-B-18
Smith, T	3-B-15
Smyser, C	3-A-5
Smyser, C	1-C-26, 1-C-33
Smyser, T	1-C-26, 1-C-33, 3-A-5
Snyder, A	3-C-29,1-C-26
Snyder, J	3-G-52,3-D-36,1-A-6
Somerville, L	1-A-6, 1-B-13, 1-B-17, 1-D-42, 3-A-4, 3-B-18, 3-D-36, 3-D-37
Spittle, A	3-C-20,1-C-30
Steinbeis, N	3-D-44
Steinberg, L	2-C-23,2-B-18,1-A-3
Stephano, T	3-D-40
Stevens, M	3-A-3
Strang, N	2-B-18
Styner, M	3-A-2,3-C-21,1-C-20,2-C-30
Supekar, K	3-F-48
Sylvester, C	1-C-33
Symeonidou, I	2-A-12
Sze, G	3-C-24
Tamm, L	3-A-10
Tashjian, S	3-B-14,1-C-34
Taylor-Thompson, K	1-A-3
Telzer, E	1-D-40, 2-B-17, 2-D-38, 2-B-16, 3-B-12, 3-D-45
Tereshchenko, A	1-G-52
Tervo-Clemmens, B	2-G-52
Thomas, K	1-C-25, 2-D-37, 3-C-28

Author	Poster No.
Thomason, M	3-C-33,1-C-29,3-A-7
Thompson, D	3-C-20,1-C-30
Thompson, L	3-A-1
Toni, I	2-C-33
Toth, S	2-D-37, 3-C-28
Tottenham, N	1-F-48, 3-D-42, 3-D-45
Tucker-Drob, E	2-A-4
Tyborowska, A	2-C-33
Uddin, L	1-C-32, 2-A-2, 3-D-42
Utevsky, A	3-A-6
Vaidya, C	2-A-8
van den Bos, W	2-B-15
van den Heuvel, M	3-A-7, 3-C-33
van der Meulen, M	2-D-35,3-D-44
Van Dijk, K	3-D-36
van Duijvenvoorde, A	2-B-14, 2-D-35, 3-A-6,
van IJzendoorn, M	3-D-44
Van Tieghem, M	1-F-48
Vance, A	2-G-50
VanMeter, J	1-C-22, 2-B-19
VanTieghem, M	3-D-45
Viarouge, A	3-A-11
Vidal, C	3-D-36
Vijayakumar, N	1-B-15,1-D-43
Vilgis, V	2-C-34, 2-G-50, 3-C-26, 3-C-23
Volman, I	2-C-33
Wadhwa, P	2-C-30, 2-C-31, 3-C-21
Wang, K	3-A-1
Warfield, S	3-C-20
Weissman, D	2-D-45
Werchan, D	1-F-46
Wesonga, E	3-C-34
Whalen, D	1-D-44
White, D	3-C-27, 3-C-34
Whittle, S	3-C-31
Widness, J	1-G-52
Willcutt, E	3-A-1
Wilson, R	1-B-17
Yaffe, G	3-B-18
Yoon, L	1-D-45
Zehra, A	1-A-9
Zheng, A	1-A-12
Zopp, J	1-C-20

Flux Congress Posters | Titles, Authors and Affiliations

Poster Session 1 Thursday September 8, 2016

1-A-1 Adolescents' inhibitory control: Keep it cool or lose control

Ania Aite¹, Mathieu Cassotti¹, Adriano Linzarini¹, Anaïs Osmont¹, Olivier Houde¹, Grégoire Borst¹

¹University Paris Descartes

1-A-2 Time-resolved EEG predicts classification of words and pictures in the infant brain

Laurie Bayet¹, Zoe Pruitt², Julia Cataldo³, Radoslaw Cichy⁴, Charles Nelson⁵, Richard Aslin²

¹University of Rochester, Boston Children's Hospital, Harvard Medical School, ²University of Rochester, ³Harvard University, ⁴Free University, Massachusetts Institute of Technology, ⁵Boston Children's Hospital, Harvard Medical School, Harvard Graduate School of Education

1-A-3 The "triple threat": influence of peers, excitement, and reward on cognitive control capacity in adolescents

Kaitlyn Breiner¹, Anfei Li², Alexandra Cohen², Laurence Steinberg³, Richard Bonnie⁴, Elizabeth Scott⁵, Kim Taylor-Thompson⁶, Marc Rudolph⁷, Jason Chein³, Jennifer Richeson⁸, Danielle Dellarco², Damien Fair⁷, BJ Casey², Adriana Galvan¹

¹UCLA, ²Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, ³Temple University, ⁴University of Virginia, ⁵Columbia University, ⁶New York University, ⁷Oregon Health & Sciences University, ⁸Northwestern University

1-A-4 Indistinct neural representations for addition and subtraction problems in the posterior parietal cortex predict arithmetic scores in primary school children with mathematical learning disabilities

Teresa luculano¹, Ting-Ting Chang², Arron Metcalfe¹, Vinod Menon¹

¹Stanford University School of Medicine, ²National Chengchi University

1-A-5 Developmental increases in cortical restingstate variability

Scott Marek¹, William Foran¹, Avniel Ghuman¹, Beatriz Luna¹ ¹University of Pittsburgh

1-A-6 The relationship between cognitive control over reward and risk-taking is explained by age

Kristin Meyer¹, Juliet Davidow², Constanza Bustamente², Jenna Snyder¹, Leah Somerville², Margaret Sheridan¹ ¹UNC, ²Harvard

1-A-7 Modulation of the default mode network during naturalistic viewing - a developmental study

Dustin Moraczewski1, Elizabeth Redcay1 ¹University of Maryland, College Park

1-A-8 Adaptive control and the avoidance of cognitive demand across development

Jesse Niebaum¹

¹University of Colorado, Boulder

1-A-9 Relations between source memory and hippocampal volume in early childhood

Tracy Riggins¹, Amna Zehra¹, Marissa Clark¹, Elizabeth Mulligan¹

¹University of Maryland

1-A-10 Neural mechanisms underlying working memory for emotional faces across development

Mava Rosen¹, Margaret Sheridan², Kelly Sambrook¹, Meg Dennison¹, Jessica Jenness¹, Zoe Miles¹, Katie McLaughlin¹ ¹University of Washington, ²University of North Carolina at Chapel Hill

1-A-11 Event-related oscillations and memory retrieval in the developing brain

France Simard¹, Anik Paquet¹, Geneviève Cadoret¹ ¹Université du Québec à Montréal

1-A-12 Eve movements relate to developmental differences in cued task switching performance

Annie Zheng¹, Joshua McBride¹, Joel Martinez², Lauren Deschner¹, Jessica Church¹

¹University of Texas at Austin, ²Princeton University

1-B-13 Social influence on adolescent ambiguous and risky decision-making

Barbara Braams¹, Juliet Davidow¹, Leah Somerville¹ ¹Harvard University

1-B-14 Cognitive components underpinning the development of model-based learning

Nessa Bryce¹, Tracey Shi¹, Catherine Hartley¹ ¹Weill Cornell Medicine

1-B-15 Brain-behavior relationships between social exclusion or over-inclusion and subsequent decisionmaking in adolescents

Theresa Cheng¹, Nandita Vijayakumar¹, Shannon Peake¹, John Flournoy¹, Jessica Flannery¹, Arian Mobasser¹, Sarah Alberti¹, Philip Fisher¹, Jennifer Pfeifer¹

¹University of Oregon

1-B-16 Social context as a moderator of neural responses to outcomes of risk decisions across community and foster care adolescents

Jessica Flannery¹, Shannon Peake¹, John Fournoy¹, Sarah Alberti¹, Arian Mobasser¹, Philip Fisher¹, Jennifer Pfeifer¹ ¹University of Oregon

1-B-17 Exploratory decision making becomes more strategic through adolescence

Megan Garrad¹, Stephanie Sasse¹, Andrew Drysdale², Nadine Abi Akar¹, Catherine Insel¹, Robert Wilson³, Leah Somerville¹ ¹Harvard University, ²Cornell University, ³University of Arizona

1-B-18 The neurobiological effects of daily stress on risky decision-making in adolescents

Jessica Phuong¹, Adriana Galvan¹

¹UCLA

1-B-19 Social media and the social brain: associations between real-world risk-taking and neural responses to Instagram photographs

*Lauren Sherman*¹, Leanna Hernandez¹, Patricia Greenfield¹, Mirella Dapretto¹

¹UCLA

1-C-20 Early brain development predicts deficits in attention and working memory at school entry

Saima Akbar¹, Martin Styner¹, Barbara Goldman¹, Gang Li¹, Jessica Bullins¹, Shaili Jha¹, Jared Zopp¹, Dinggang Shen¹, John Gilmore¹, Sarah Short¹

¹UNC-CH

1-C-21 Development of hippocampal-prefrontal cortex interactions through adolescence

*Finnegan Calabro*¹, Vishnu Murty¹, Beatriz Luna¹ ¹University of Pittsburgh

1-C-22 Under-connectivity between executive networks and cerebellum predicts later development of a pro-violent disposition in adolescents

*Shady El Damaty*¹, Kelly Martin¹, Valerie Darcey¹, Emma Rose², Diana Fishbein², John VanMeter¹

¹Georgetown University, ²The Pennsylvania State University

1-C-23 Neurite density index is sensitive to age related differences in the developing brain

*Sila Genc*¹, Charles Malpas¹, Richard Beare¹, Scott Holland², Timothy Silk¹

¹Murdoch Childrens Research Institute, ²Cincinatti Children's Hospital Medical Center

1-C-24 Developmental differences in hippocampal contribution to episodic memory in 4- to 8-year-old children

*Fengji Geng*¹, Elizabeth Mulligan¹, Tracy Riggins¹ ¹University of Maryland

1-C-25 Risk taking, impulsivity, and brain volume in a sample of post-institutionalized youth

Max Herzberg¹, Amanda Hodel¹, Raquel Cowell¹, Ruskin Hunt¹, Megan Gunnar¹, Kathleen Thomas¹

¹University of Minnesota

1-C-26 Neonatal cerebellar functional connectivity and early childhood neurodevelopmental outcomes

*Charlotte Herzmann*¹, Tara Smyser¹, Joshua Shimony¹, Cynthia Rogers¹, Jeanette Kenley¹, Abraham Snyder¹, Christopher Smyser¹

¹Washington University in St. Louis

1-C-27 Tissue-iron as a non-invasive indicator of striatal dopamine system neuroanatomy during adolescence

Bart Larsen¹, Valur Olafsson¹, Davneet Minhas¹, Finnegan Calabro¹, Julie Price¹, Beatriz Luna¹

¹University of Pittsburgh

1-C-28 Early emotion dysregulation predicts subsequent connectivity abnormalities in children with Major Depressive Disorder (MDD)

Katherine Lopez¹, Joan Luby¹, Deanna Barch¹

¹Washington University in St Louis

1-C-29 Diminished connectivity of corticostriatal reward pathways in socioeconomically disadvantaged youth

*Narcis Marshall*¹, Hilary Marusak², Joshua B.Hatfield³, Craig Peters², Kelsey Sala-Hamrick³, Laura Crespo³, Moriah Thomason⁴

¹NICHD/NIH, ²Wayne State University School of Medicine, ³Wayne State University, ⁴Wayne State University / NICHD/NIH

1-C-30 Multimodal investigation of the preterm neonatal cerebellum: a combined volumetric and fibre tractography MRI study

*Lillian Matthews*¹, Peter Anderson², Alexander Leemans³, Christopher Adamson², Richard Beare², Jian Chen², Claire Kelly², Wai Yen Loh², Lex Doyle⁴, Alicia Spittle², Jeanie Cheong⁴, Marc Seal², Deanne Thompson²

¹Brigham and Women's Hospital, Harvard Medical School, ²Murdoch Childrens Research Institute, ³University Medical Center Utrecht, ⁴Neonatal Services, The Royal Women's Hospital

1-C-31 Brain mechanisms for processing discriminative and affective touch in 7 month-old infants

*Helga Miguel*¹, Isabel Lisboa¹, Marta Alves¹, Tiago Ferreira¹, Óscar Gonçalves¹, Adriana Sampaio¹

¹University of Minho

1-C-32 Moment-to-moment BOLD signal variability reflects functional specialization across development

*Jason Nomi*¹, Taylor Bolt¹, Chiemeka Ezie¹, Lucina Uddin¹, Aaron Heller¹

¹University of Miami

1-C-33 Neonatal functional connectivity predicts behavioral inhibition at age 2 years

*Chad Sylvester*¹, Tara Smyser¹, Jeanette Kenley¹, Christopher Smyser¹, Cynthia Rogers¹ ¹Washington University

1-C-34 Sleep deficiency and default mode network connectivity in adolescents

Sarah Tashjian¹, Diane Goldenberg¹, Adriana Galvan¹ ¹University of California, Los Angeles

1-D-35 How social pressure influences hot and cool inhibitory control in adolescence?

*Lison Bouhours*¹, Anaëlle Camarda¹, Anaïs Osmont¹, Julien Hay¹, Olivier Houdé¹, Grégoire Borst¹, Mathieu Cassotti¹ ¹Paris Descartes University

1-D-36 Enhanced reward system reactivity buffers risk for depression in adolescents exposed to maltreatment

*Meg Dennison*¹, Margaret Sheridan², Daniel Busso³, Jessica Jenness¹, Matthew Peverill¹, Maya Rosen¹, Katie McLaughlin¹ ¹University of Washington, ²University of North Carolina, ³Harvard Graduate Schoool of Education

1-D-37 Positive affect regulation relates to neural response in children: the case of dampening

*Kirsten Gilbert*¹, Katherine Luking², David Pagliaccio³, Joan Luby⁴, Deanna Barch¹

¹Washington University in St. Louis , ²Stony Brook University, ³National Institute of Mental Health, ⁴Washington University in St. Louis School of Medicine

1-D-38 Neural correlates of deliberate emotion regulation in early childhood.

Adam Grabell¹, Theodore Huppert¹, Susan Perlman¹ ¹University of Pittsburgh School of Medicine

1-D-39 A pubertal shift in the relation between diurnal cortisol and nucleus accumbens activation during anticipation of reward and punishment

*Lucy King*¹, Natalie Colich¹, Joelle Lemoult¹, Ian Gotlib¹ ¹Stanford University

1-D-40 Resting-state connectome similarity in mother-child dyads and its impact on emotional synchrony

*Tae-Ho Lee*¹, Michelle Miernicki², Eva Telzer¹

¹University of North Carolina, ²University of Illinois at Urbana-Champaign

1-D-41 Enhancement of cognitive control in rewarding contexts in adolescence and adulthood

*Lucia Magis-Weinberg*¹, Ruud Custers², Iroise Dumontheil³ ¹University College London, ²Utrecht University, ³Birkbeck, University of London

1-D-42 Emotion concepts become more distinct across development but the ability to specifically identify one's emotions is low in adolescence

*Erik Nook*¹, Stephanie Sasse¹, Hilary Lambert², Katie McLaughlin², Leah Somerville¹

¹Harvard University, ²University of Washington

1-D-43 Feeling left out or violated social expectations? An fMRI adaptation of Cyberball using parametric modulators

Nandita Vijayakumar¹, Theresa Cheng¹, Shannon Peake¹, John Flournoy¹, Jessica Flannery¹, Arian Mobasser¹, Sarah Alberti¹, Phil Fisher¹, Jennifer Pfeifer¹

¹University of Oregon

1-D-44 Preschool physical activity influences activation in emotion regulation brain regions at school age

*Diana Whalen*¹, Kirsten Gilbert¹, Andy Belden¹, Joan Luby¹, Deanna Barch¹

¹Washington University in St. Louis

1-D-45 Development of Neural Sociometer: Role of DLPFC in tracking accumulated social feedbacks and biasing social evaluative decision

*Leehyun Yoon*¹, Hackjin Kim¹ ¹Korea University

1-F-46 Cortical plasticity and specialization in response to multimodal events in infancy

*Heidi Baumgartner*¹, Denise Werchan¹, David Lewkowicz², Dima Amso¹

¹Brown University, ²Northeastern University

1-F-47 Neural Correlates of Reading Improvement in Struggling Readers

*Mary Abbe Roe*¹, Lauren Deschner¹, Dana DeMaster², Jenifer Juranek², Jessica Church¹

¹University of Texas at Austin, ²University of Texas Health Science Center at Houston

1-F-48 Transgenerational transmission of learned fears via observational conditioning

Jennifer Silvers¹, Bridget Callaghan², Kaitlin O'Sullivan², Michelle Van Tieghem², Nim Tottenham² ¹UCLA, ²Columbia University

1-G-49 ERP Evidence of semantic processing in children with ASD

*Charlotte DiStefano*¹, Elizabeth Baker¹, Andrew Marin¹, Shafali Jeste¹

¹University of California, Los Angeles

1-G-50 Preschool executive function deficits: Prediction of school-age ADHD and MDD outcomes and resting state network connectivity.

*Elizabeth Hawkey*¹, Joan Luby¹, Deanna Barch¹ ¹Washington University in St. Louis

1-G-51 Examining the symptomology network of ADHD: A new way to view ADHD symptoms.

*Tim Silk*¹, Charles Malpas¹, Richard Beare¹, Vicki Anderson², Daryl Efron², Philip Hazell³, Jan Nicholson⁴, Emma Sciberras⁵ ¹Murdoch Childrens Research Institute, ²Royal Children's Hospital, ³University of Sydney, ⁴Latrobe University, ⁵Deakin University

1-G-52 Brain structure in premature infants: liberal vs. restricted red blood cell transfusions

Alexander Tereshchenko¹, Andrew Metzger¹, Vincent Magnotta¹, John Widness¹, Peg Nopoulos¹ ¹University of Iowa

Poster Session 2 Friday September 9, 2016

2-A-1 Electrophysiological correlates of intentional source memory retrieval in early childhood

*Kelsey Canada*¹, Fengji Geng¹, Tracy Riggins¹ ¹University of Maryland

2-A-2 Compromised integrity of executive control and salience networks reflects heterogeneous executive function ability in ASD and ADHD

Dina Dajani¹, Paola Odriozola¹, Mary Beth Nebel², Maria Llabre¹, Stewart Mostofsky², Lucina Uddin¹

¹University of Miami, ²Kennedy Krieger Institute

2-A-3 Childhood music training, executive function and self-regulation

Alissa Der Sarkissian¹, Assal Habibi¹ ¹USC Brain & Creativity Institute

2-A-4 Comparing child task performance in and out of the scanner

*Laura Engelhardt*¹, K. Paige Harden¹, Elliot Tucker-Drob¹, Jessica Church¹

¹The University of Texas at Austin

2-A-5 Gaze patterns provide insights about the malleability of reasoning skills

Julia Kang¹, Belen Guerra-Carrillo¹, Silvia Bunge¹ ¹UC Berkeley

2-A-6 Functional brain organization for theory of mind in infants

Daniel Hyde¹

¹University of Illinois at Urbana-Champaign

2-A-7 Flexible Number Representations Underlie Children's Math Achievement

Andrew Mattarella-Micke¹, Bruce McCandliss¹ ¹Stanford

2-A-8 reduced neural engagement during working memory in pediatric obesity

*Alaina Pearce*¹, J. Bradley Cherry¹, Alex Olson¹, Eleanor Mackey², Evan Nadler², Chandan Vaidya¹

¹Georgetown University, ²Children's National Medical Center

2-A-9 Interpersonal neural synchronization as a biological mechanism for shared intentionality in adults and children

*Susan Perlman*¹, Caroline MacGillivray², Meghan Murphy¹, Theodore Huppert¹

¹University of Pittsburgh, ²National Institute of Mental Health

2-A-10 The neural differences and similarities between children with and without learning disorders during arithmetic

*Lien Peters*¹, Jessica Bulthé¹, Hans Op de Beeck¹, Bert De Smedt¹ ¹KU Leuven

2-A-11 A Hierarchical extension of the LATER model to examine differences in inhibitory control by development, reward type, and weight status

Nicole Roberts¹

¹The Pennsylvania State University

2-A-12 The time-course of Theory of Mind processes during adolescence: an eye tracking study

*Irene Symeonidou*¹, Heather Ferguson², Iroise Dumontheil³, Wing Yee Chow¹, Richard Breheny¹

¹UCL , ²University of Kent, ³Birkbeck, University of London

2-B-13 A longitudinal analysis of the lowa Gambling Task

*Brandon Almy*¹, Michael Kuskowski¹, Steve Malone¹, Evan Myers¹, Monica Luciana¹

¹University of Minnesota - Twin Cities

2-B-14 The neural correlates of risk and ambiguity processing in adolescent risky choice

*Neeltje Blankenstein*¹, Eveline Crone¹, Jiska Peper¹, Anna Van Duijvenvoorde¹

¹Leiden University

2-B-15 I want it now! The role of pubertal testosterone in impatience of adolescent boys

*Corinna Laube*¹, Robert Lorenz¹, Wouter van den Bos¹ ¹Max Planck Institute for Human Development

2-B-16 Two roads diverge: context-specific outcomes associated with decreased neural sensitivity to negative feedback during adolescence.

*Ethan McCormick*¹, Eva Telzer¹ ¹University of Illinois

2-B-17 Different strokes: How social context differentially influences inhibitory failures in normative and high-risk adolescents.

*Michael Perino*¹, João Guassi-Moreira¹, Eva Telzer¹ ¹University of Illinois at Urbana-Champaign

2-B-18 The behavioral and neural influences of alcohol and social context on risky choice

*Gail Rosenbaum*¹, Morgan Botdorf¹, Ashley Smith², Karla Fettich¹, Jamie Patrianakos¹, Nicole Strang, Laurence Steinberg¹, Jason Chein¹

¹Temple University, ²National Institute of Mental Health

2-B-19 Adolescent substance use predicted by preuse differences in effective connectivity

*John VanMeter*¹, Shady El Damaty¹, Kelly Martin¹, Valerie Darcey¹, Emma Rose², Diana Fishbein²

¹Georgetown University, Center for Functional and Molecular Imaging, ²Pennsylvania State University

2-C-20 Machine learning to predict brain maturation in ASD: the ABIDE cohort

Gareth Ball¹ ¹Murdoch Childrens Research Institute

2-C-21 Longitudinal associations between early parenting and child cortisol reactivity on hippocampal volume during childhood

Sarah Blankenship¹, Tracy Riggins¹, Lea Dougherty¹ ¹University of Maryland

2-C-22 Neural correlates of social evaluation and depression risk in adolescent girls

Justin Caouette¹, Alison Hipwell², Kate Keenan³, Erika Forbes², Amanda Guyer⁴

¹Oregon Health & Science University, ²University of Pittsburgh, ³University of Chicago, ⁴University of California -Davis

2-C-23 Cortical thickness of prefrontal regions is related to sensation seeking in adults but not adolescents

Grace Icenogle¹, Karla Fettich¹, Laurence Steinberg¹, Kaitlyn Breiner², Adriana Galvan², Jason Chein¹

¹Temple University, ²University of California Los Angeles

2-C-24 The development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex

Maria Jalbrzikowski¹, Bart Larsen¹, William Foran¹, Daniel Simmonds¹, Finnegan Calabro¹, Beatriz Luna¹

¹University of Pittsburgh

2-C-25 Childhood violence exposure and neural systems underlying emotional working memory

Jessica Jenness¹, Maya Rosen¹, Meg Dennison¹, Margaret Sheridan², Kelly Sambrook¹, Katie McLaughlin¹

¹University of Washington, ²University of North Carolina-Chapel Hill

2-C-26 Long-term effects of LCPUFA supplementation in the first year of life: A multimodal neuroimaging study at age 9

Rebecca Lepping¹, Kathleen Gustafson¹, Laura Martin¹, Ke Liao¹, In-Young Choi¹, Phil Lee¹, Robyn Honea¹, William Brooks¹, Susan Carlson¹, John Colombo²

¹University of Kansas Medical Center, ²University of Kansas

2-C-27 Brain structure mediates the relationship between low socioeconomic status and ADHD symptoms

Laura Machlin¹, Katie McLaughlin², Margaret Sheridan¹ ¹University of North Carolina at Chapel Hill, ²University of Washington

2-C-28 Neonatal brain alterations associated with short term memory at 4 years in children born very preterm.

Anita Montagna¹, Dafnis Batalle¹, Jonathan O'Muircheartaigh¹, Nigel Kennea², Mary Rutherford¹, David Edwards¹, Chiara Nosarti¹

¹King's College London, ²St Georges University of London

2-C-29 Understanding successful neuroplasticity through high-fidelity imaging of individual perinatal stroke survivors

Mario Ortega¹, Timothy Laumann¹, Catherine Hoyt-Drazen¹, Annie Nguyen¹, Rebecca Coalson¹, Jonathan Koller¹, Joshua Shimony¹, Deanna Greene¹, Jeffrey Berg², Adrian Gilmore¹, Kathleen McDermott¹, Steven Nelson³, Steven Petersen¹, Bradley Schlaggar¹, Nico Do

¹Washington University in St. Louis School of Medicine, ²Washington University in St. Louis, ³Department of Veterans Affairs, University of Texas

2-C-30 Newborn insula gray matter volume is prospectively associated with early life fat gain

Jerod Rasmussen¹, Sonja Entringer², Kruggel Frithjof¹, Dan Cooper¹, Martin Styner³, John Gilmore³, Pathik Wadhwa¹, Claudia Buss²

¹Univ. of California, Irvine, ²The Charité ? Universitätsmedizin Berlin, ³University of North Carolina at Chapel Hill

2-C-31 Within-network newborn functional connectivity is associated with maternal Interleukin-6

Marc Rudolph¹, Alice Graham¹, Claudia Buss², Jerod Rasmussen³, Sonja Entringer², Pathik Wadhwa⁴, Damien Fair¹

¹Oregon Health & Science University, ²Charité University of Medicine and University of California, Irvine, ³University of California, Irvine, School of Medicine, ⁴University of California, Irvine

2-C-32 Hippocampal volume and sensitivity to social context in the emergence of depression in adolescence

Roberta Schriber¹, Zainab Anbari², Paul Hastings¹, Amanda Guver¹

¹University of California, Davis, ²Georgetown University

2-C-33 Gray matter maturation is differentially influenced by early-life and pubertal stressful experiences – a prospective longitudinal study

Anna Tyborowska¹, Inge Volman², Hannah Niermann¹, Loes Powels¹, Sanny Smeekens³, Antonius Cillessen¹, Ivan Toni¹, Karin Roelofs¹

¹Radboud University Nijmegen, ²Institute of Neurology, University College London, ³Open University of the Netherlands

2-C-34 Affective disorder symptoms during childhood, early- and mid-adolescence are differentially associated with subcortical volumes in later adolescence among females

Veronika Vilgis¹, Erika Forbes, Alison Hippwell¹, Kate Keenan¹, Amanda Guyer¹

¹UC Davis

2-D-35 A new experimental paradigm to examine social evaluation and aggression regulation in 7-10year-old children: A pilot, test and replication study

*Michelle Achterberg*¹, Anna van Duijvenvoorde¹, Mara van der Meulen¹, Saskia Euser¹, Marian Bakermans-Kranenburg¹, Eveline Crone¹

¹Leiden University

2-D-36 Social reward and voice processing systems during cross-sectional development

Amanda Baker¹, Daniel Abrams¹, Aarthi Padmanabhan¹, Paola Odriozola¹, Vinod Menon¹

¹Stanford University School of Medicine

2-D-37 Associations between resilience and frontallimbic brain function during an emotional face task in adults with and without a history of childhood maltreatment

*Lauren Demers*¹, Kelly Jedd McKenzie¹, Ruskin Hunt¹, Dante Cicchetti¹, Raquel Cowell², Fred Rogosch³, Sheree Toth³, Kathleen Thomas¹

¹University of Minnesota, ²St. Norbert College, ³University of Rochester

2-D-38 Tracking longitudinal changes of maternal influence on adolescent neurocognition during risk-taking

Joao Guassi Moreira¹, Eva Telzer¹

¹University of Illinois, Urbana Champaign

2-D-39 Valence modulates visual perceptual discrimination: Evidence from the other-species effect

Andrew Lynn¹, Dima Amso¹

¹Brown University

2-D-40 A preliminary fMRI study of emotion regulation as a predictor of suicidal ideation

Adam Miller¹, Katie McLaughlin ², Matthew Peverill², Margaret Sheridan¹

¹University of North Carolina at Chapel Hill, ²University of Washington

2-D-42 Context-dependent trajectories of mesolimbic network connectivity throughout adolescent neurodevelopment.

*Vishnu Murty*¹, David Montez¹, Will Foran¹, Bea Luna¹ ¹University of Pittsburgh

2-D-43 Perceived parental criticism influences salience network coherence in early-pubertal girls

Sarah Ordaz¹, Morgan Popolizio¹, Alexandra Price¹, Catalina Camacho¹, Ian Gotlib¹

¹Stanford University

2-D-44 The multidimensional construct of impulsivity and its longitudinal relation to testosterone across development: A factor analysis

*Jiska Peper*¹, Neeltje Blankenstein¹, Barbara Braams², Eveline Crone¹

¹Leiden University, ²Harvard University

2-D-45 Community crime exposure, neural response to sad faces, and adolescent externalizing problems

David Weissman¹, Amanda Guyer¹, Kristina Gelardi¹, Paul Hastings¹, Richard Robins¹

¹University of California Davis

2-F-46 Tracing trajectories of audio-visual learning in the infant brain

Lauren Emberson¹, Alyssa Kersey² ¹Princeton University, ²University of Rochester

2-F-47 Neural correlates of auditory and language development in children engaged in music training

Assal Habibi¹, Hanna Damasio¹ ¹University of Southern California

2-F-48 4-weeks of numerical training improves

arithmetic performance and increases neural modulation in children with mathematical learning disabilities

Samantha Mitsven¹, Teresa luculano¹, Vinod Menon¹ ¹Stanford University School of Medicine

2-G-49 Psychological distance and cognitive coping styles among adolescent users of an online mental health forum

*Peter Franz*¹, Erik Nook¹, Karthik Dinakar², Matthew Nock¹ ¹Harvard University, ²Massachusetts Institute of Technology

2-G-50 Cortical morphometry in attention deficit/hyperactivity disorder: contribution of thickness and surface area to volume

*Charles Malpas*¹, Richard Beare¹, Chris Adamson¹, Veronika Vilgis¹, Alasdair Vance², Mark Bellgrove³, Timothy Silk¹

¹Murdoch Children's Research Institute, ²The University of Melbourne, ³Monash University

2-G-51 Developmental trajectories of irritability and associations with child and maternal depression

*David Pagliaccio*¹, Deanna Barch², Daniel Pine¹, Joan Luby², Ellen Leibenluft¹

¹National Institute of Mental Health, ²Washington University in St. Louis

2-G-52 Cannabis use and adolescent neurocognitive development: a prospective fmri study

*Brenden Tervo-Clemmens*¹, Finnegan Calabro¹, Beatriz Luna¹ ¹University of Pittsburgh Flux Congress Posters

Poster Session 3 Saturday September 10, 2016

3-A-1 Do executive processes in working memory underlie the association between reading and math ability?

*Marie Banich*¹, Kai Wang¹, Daniel Leopold¹, Andrew Reineberg¹, L. Thompson², Laurie Cutting³, Erik Willcutt⁴, Stephen Petrill⁵

¹University of Colorado , ²Case Western Reserve University, ³Vanderbilt University, ⁴University of Colorado, ⁵Ohio State University

3-A-2 White matter tract integrity is related to cognitive ability in early life

*Jessica Bullins*¹, Barbara Goldman¹, Sarah Short¹, Rebecca Knickmeyer¹, Martin Styner¹, John Gilmore¹ ¹University of North Carolina at Chapel Hill

3-A-3 Cortical folding individual differences associated with cognitive ability in adolescence

Yu Sun Chung¹, Christopher Hyatt¹, Michael Stevens¹

¹Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center

3-A-4 The effects of uncertainty on concurrent information processing from late childhood to adulthood

*Erik Kastman*¹, Alea Skwara, Catherine Insel¹, Alexandra Rodman¹, Stephanie Sasse ¹, Leah Somerville ¹

¹Harvard University

3-A-5 Neonatal regional white matter microstructure correlates with cognitive inhibition and shifting efficiency in very preterm children at age 5 years

*Rachel Lean*¹, Tara Smyser¹, Jeanette Kenley¹, Joseph Ackerman Jr.¹, Joshua Shimony ¹, Chris Smyser¹, Cynthia Rogers¹

¹Washington University School of Medicine

3-A-6 Developmental emergence of precuneus as a functional core of the default mode network

Rosa Li¹, Amanda Utevsky¹, Scott Huettel¹, Barbara Braams², Sabine Peters³, Eveline Crone³, Anna van Duijvenvoorde³

¹Duke University, ²Harvard University, ³Leiden University

3-A-7 Maternal health behaviors and fetal functional neural connectivity networks in utero

Janessa Manning¹, Marion van den Heuvel¹, Jasmine Hect¹, Nacis Marshall¹, Moriah Thomason¹ ¹Wayne State University

3-A-8 Gain stabilization of cognitive brain states underlies working memory development

David Montez¹, Finnegan Calabro¹, Beatriz Luna¹ ¹University of Pittsburgh

3-A-9 Developmental differences in hippocampalprefrontal mediated memory updating

*Margaret Schlichting*¹, Katharine Guarino¹, Alison Preston¹ ¹The University of Texas at Austin

3-A-10 Association between reaction time variability and resting state fMRI in young adults with ADHD

*Leanne Tamm*¹, Clare Kelly², Stephen Becker¹, Tom Maloney¹, Baylie Fowler¹, Jeffery Epstein¹

¹Cincinnati Children's Hospital Medical Center, ²Trinity College Institute of Neuroscience

3-A-11 The impact of size on the development of numerical estimation in early school years.

*Arnaud Viarouge*¹, Philippine Courtier¹, Manon Hoppe¹, Juliette Melnik¹, Grégoire Borst¹, Olivier Houdé¹ ¹Paris Descartes University

3-B-12 Parents versus peers: Characterizing the neural correlates of conflicting social influence on adolescent attitudes

*Kathy Do*¹, Ethan McCormick¹, Eva Telzer¹ ¹University of North Carolina, Chapel Hill

3-B-14 The influence of pubertal hormones on frontostriatal coupling during top-down regulation of motor versus reward response

*Diane Goldenberg*¹, Sarah Tashjian¹, Adriana Galvan¹ ¹University of California, Los Angeles

3-B-15 Healthy eating decisions require efficient dietary self-control in children: a mouse-tracking food decision study

*Oh-Ryeong Ha*¹, Amanda Bruce², Stephen Pruitt¹, T. Ryan Smith², Dominic Burkart¹, Bradley Cherry¹, Jared Bruce¹, Seung-Lark Lim¹

¹University of Missouri - Kansas City, ²University of Kansas Medical Center

3-B-16 The mesolimbic dopamine pathway is sensitive to early life adversity

*Niki Hosseini-Kamkar*¹, J Bruce Morton¹ ¹Western University

3-B-17 Peer influences on adolescent risk taking: Comparing a community and foster care sample.

*Zdena Op de Macks*¹, Shannon Peake¹, John Flournoy¹, Jessica Flannery¹, Arian Mobasser¹, Maureen Durnin¹, Sarah Alberti², Philip Fisher¹, Jennifer Pfeifer¹

¹University of Oregon, ²Oregon Health & Science University

3-B-18 Asymmetric effects of friends' gains and losses on adolescent risky decisions

*Katherine Powers*¹, Gina Falcone¹, Gideon Yaffe², Hedy Kober², Leah Somerville¹

¹Harvard University, ²Yale University

3-B-19 Friend versus foe: Neural networks of prosocial decision-making with peers

*Lisa Schreuders*¹, Sanny Smeekens², Antonius Cillessen ¹, Berna Guroglu¹

¹Leiden University, ²Open University

3-C-20 A new neonatal parcellated brain atlas: The Melbourne Children's Regional Infant Brain (M-CRIB) atlas.

Bonnie Alexander¹, Andrea Murray, Wai Yen Loh¹, Lillian Matthews¹, Chris Adamson¹, Richard Beare¹, Jian Chen¹, Claire Kelly¹, Sandra Rees, Simon Warfield, Peter Anderson¹, Lex Doyle, Alicia Spittle ¹, Jeanie Cheong¹, Marc Seal¹, Deanne Thompson¹

¹Murdoch Childrens Research Institute

3-C-21 Prospective associations between maternal Interleukin-6 concentrations during pregnancy and newborn amygdala volume and connectivity

*Claudia Buss*¹, Alice Graham, Jerod Rasmussen, Marc Rudolph², Christine Heim¹, John Gilmore¹, Martin Styner, Sonja Entringer¹, Pathik Wadhwa, Damien Fair

¹Institut für Medizinische Psychologie, ²

3-C-22 Ages differences in focal and nonfocal prospective memory tasks: An ERP study

*Ana Cejudo Garcia*¹, Almudena Ortega Segura¹, M^a Teresa Bajo Molina¹

¹Granada University

3-C-23 Pubertal timing is associated with white matter tract development in late adolescence

*Rajpreet Chahal*¹, Veronika Vilgis¹, Kevin Grimm², Kate Keenan³, Erika Forbes⁴, Allison Hipwell⁴, Amanda Guyer¹ ¹University of California Davis, ²Arizona State University,

³University of Chicago, ⁴University of Pittsburgh

3-C-24 Fetal total intracranial volume growth using longitudinal MRI across the third trimester

Sarah Cohen¹, Soo Kwon¹, Sarah Cross¹, Cheryl Lacadie¹, Gordon Sze¹, R. Todd Constable¹, Laura Ment¹, Dustin Scheinost¹

¹Yale University

3-C-25 Fiber pathways supporting early literacy development in 5-8-year-old children

Anthony Dick¹, Iris Broce¹, Byron Bernal², Nolan Altman², Catherine Bradley³, Natalie Baez¹, Luis Cabrera¹, Gretter Hernandez¹, Anna De Feria¹

¹Florida International University, ²Nicklaus Children's Hospital, ³C.W. Bill Young VA Medical Center, Bay Pines VA Healthcare System

3-C-26 Childhood poverty predicts neural connectivity to negative faces in adolescent girls

*Kristina Gelardi*¹, Veronika Vilgis¹, Artha Gillis², Erika Forbes³, Alison Hipwell³, Kate Kennan⁴, Amanda Guyer¹

¹University of California, Davis, ²University of California, Los Angeles, ³University of Pittsburgh, ⁴University of Chicago

3-C-27 Developmental trajectories of cortical thickness, gray matter volume, and surface area in children and young adults with Phenylketonuria

Zoe Hawks¹, Anna Hood¹, Dov Lerman-Sinkoff¹, Jerrel Rutlin², Joshua Shimony², Desiree White¹

¹Washington University in St. Louis, ²Washington University School of Medicine in St. Louis

3-C-28 Structural brain correlates of resilience in adults with a history of childhood maltreatment

*Kelly Jedd McKenzie*¹, Alexandra Gibbs¹, Erin McKay¹, Ruskin Hunt¹, Dante Cicchetti¹, Raquel Cowell², Fred Rogosch³, Sheree Toth³, Kathleen Thomas¹

¹University of Minnesota, ²St Norbert College, ³University of Rochester Mt. Hope Family Center

3-C-29 The impact of diabetes and Wolfram Syndrome on functional connectivity

*Olga Neyman*¹, Abraham Snyder¹, Joshua Shimony¹, Tamara Hershey¹

¹Washington University School of Medicine

3-C-30 Strong positive and strong negative restingstate correlations best predict individual maturity

Ashley Nielsen¹, Deanna Greene¹, Steven Petersen¹, Brad Schlaggar¹

¹Washington University in St. Louis

3-C-31 The impact of family environments on brain development in late childhood

*Sally Richmond*¹, Marc Seal², Nicholas Allen³, Katherine Johnson¹, Richard Beare⁴, Sarah Whittle⁵

¹The University of Melbourne, ²Murdoch Childrens Research Institute; University of Melbourne, ³University of Oregon, ⁴Murdoch Childrens Research Institute, ⁵University of Melbourne; Melbourne Health

3-C-32 Neural correlates of executive functioning in children engaged in music training

*Matthew Sachs*¹, Jonas Kaplan¹, Assal Habibi¹ ¹Brain and Creativity Institute

3-C-33 Hubs in the fetal brain network

*Marion van den Heuvel*¹, Janessa Manning¹, Jasmine Hect¹, Narcis Marshall¹, Moriah Thomason¹

 $^{1}\mbox{Wayne}$ State University / Perinatology Research Branch, NICHD/NIH

3-C-34 Microstructural white matter integrity differentially predicts verbal and spatial working memory in children

*Erika Wesonga*¹, Joshua Shimony¹, Desiree White¹ ¹Washington University

3-D-35 Sex differences in the impact of early life stress on prefrontal regulation of negative stimuli

Natalie Colich¹, Lucy King¹, Sarah Ordaz¹, Kathryn Humphreys¹, Ian Gotlib¹ ¹Stanford University

3-D-36 Adaptive adjustment in cognitive control over reward in adolescence

Juliet Davidow¹, Koene R.A. Van Dijk², Jenna Snyder³, Constanza Vidal¹, Margaret Sheridan³, Leah Somerville¹ ¹Harvard University, ²Massachusetts General Hospital, ³University of North Carolina

3-D-37 Developmental emergence of frontostriatal connectivity mediates flexible upregulation of cognitive control under high stakes

*Catherine Insel*¹, Catherine Glenn², Erik Kastman¹, Megan Garrad¹, Stephanie Sasse¹, Leah Somerville¹ ¹Harvard University, ²University of Rochester

3-D-38 Striatal function in emerging adolescence: who is in the driver's seat, age, reported puberty, or hormones?

*Katherine Luking*¹, Zachary Infantolino², Brady Nelson¹, Colin Sauder³, Greg Hajcak¹

¹Stony Brook University, ²University of Delaware, ³University of Texas Health Science Center San Antonio

3-D-39 Age-varying associations between sensationseeking, impulse control, and daily cigarette-smoking during adolescence and young adulthood

David Lydon-Staley1, Charles Geier1

¹The Pennsylvania State University

3-D-40 Lateral prefrontal cortical thickness mediates the relationship between age and regulation of craving

*Rebecca Martin*¹, Jennifer Silvers², Theodore Stephano¹, Catherine Insel³, Alisa Powers⁴, Peter Franz³, Walter Mischel¹, BJ Casey⁵, Kevin Ochsner¹

¹Columbia University, ²University of California, Los Angeles, ³Harvard University, ⁴Long Island University, ⁵Yale University

3-D-41 Early MDD severity associated with developmental changes in functional connectivity of subgenual cingulate

Eric Murphy¹, Joan Luby¹, Deanna Barch¹

¹Washington University in St Louis

3-D-42 Atypical development of amygdala functional connectivity in autism: a cross-sectional study

Paola Odriozola¹, Dina Dajani², Catherine Burrows², Laurel Gabard-Durnam³, Dylan Gee¹, Nim Tottenham³, Lucina Uddin² ¹Yale University, ²University of Miami, ³Columbia University

3-D-44 Prosocial behavior in childhood and its neural correlates: A pilot, test and replication study

Mara van der Meulen¹, Nikolaus Steinbeis¹, Michelle Achterberg¹, Elisabeth Bilo¹, Marinus van IJzendoorn¹, Eveline Crone¹ ¹Leiden University

3-D-45 The effects of early adversity on amygdalaprefrontal circuitry during emotional face processing in children and adolescents

*Michelle VanTieghem*¹, Eva Telzer², Laurel Gabard-Durnam¹, Jessica Flannery³, Bonnie Goff⁴, Dylan Gee⁵, Kate Humphreys⁶, Christina Caldera⁴, Mor Shapiro⁴, Jennifer Louie⁷, Nim Tottenham¹

¹Columbia University, ²University of Illinois-Urbana Champaign, ³University of Oregon, ⁴UCLA, ⁵Weill Cornell, ⁶Stanford University, ⁷Kaiser Permanente

3-F-46 Learning to inhibit: A pedagogical intervention to overcome systematic difficulties in fundamental academic learnings in primary school

Gregoire Borst¹, Olivier Houdé¹

¹Paris Descartes University

3-F-47 Parents' decontextualized talk during early childhood predicts the neural bases of narrative processing in later childhood

*Ozlem Ece Demir*¹, Salomi Savvatia Asaridou², Susan Goldin-Meadow¹, Susan Levine¹, Steve Small²

¹University of Chicago, ²University of California - Irvine

3-F-48 Natural language processing of fMRI reveals cognitive learning induced changes in brain circuit dynamics

Jonathan Nicholas¹, Kaustubh Supekar¹, Vinod Menon¹ ¹Stanford University

3-G-49 Pre-delusional symptom severity predicts accelerated gray matter reduction and ventricular enlargement in prodromal youth who develop psychosis

Yoonho Chung¹ ¹Yale University

ale University

3-G-50 Using accelerometry to describe normative motor patterns across development

*Catherine Drazen*¹, Annie Nguyen¹, Elyse Everett¹, Jonathan Koller¹, Dustin Ragan¹, Nico Dosenbach ¹

¹Washington University in St. Louis

3-G-51 The Role of the Hippocampus in Context **Processing and Disruption following Child Trauma**

*Hilary Lambert*¹, Kelly Sambrook¹, Margaret Sheridan², Maya Rosen¹, Katie Askren¹, Katie McLaughlin¹ ¹University of Washington, ²University of North Carolina

3-G-52 Theta relative power distinguishes young children with ADHD from those without ADHD

Jenna Snyder¹, Laura Machlin¹, Margaret Sheridan¹ ¹University of North Carolina at Chapel Hill

Flux Congress Sponsors

Elsevier

www.journals.elsevier.com/develop mental-cognitive-neuroscience/

Developmental Cognitive Neuroscience publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects.

IDDRC@WUSTL

http://iddrc.wustl.edu/

The Intellectual and Developmental Disabilities Research Center at Washington University (IDDRC@WUSTL) is designed to accelerate progress in the prevention and treatment of neurodevelopmental disorders. Our scientists utilize Core facilities that tailor technological advances in model systems, developmental neuroimaging, and clinical / translational sciences to the discovery of higher-impact intervention.

Jacobs Foundation http://jacobsfoundation.org/

The Jacobs Foundation supports research and intervention projects leading to significant outcomes for children and youth all over the world. Within our research priority Science of Learning, we explore the biological bases of skill acquisition and development of children and youth and their consequences for learning environments and institutions.

McDonnell Center for Systems Neuroscience

http://centerserv.wustl.edu/

The McDonnell Center for Systems Neuroscience has resources that include flexible funding initiatives through a Small Grants Program and New Resource Proposals. Also, administrative assistance is provided for large grants and events, and the Cognitive, Computational and Systems Neuroscience (CCSN) Pathway, a curriculum available to students pursuing a Ph.D. across three Neuroscience programs.

St. Louis Children's Hospital Foundation

http://www.stlouischildrens.org/

St. Louis Children's Hospital relies on the support of donors to ensure that critically ill and injured children have access to the highest quality care. Charitable gifts help acquire new technology, improve programs, recruit specialists, and advance research. The Hospital is highly respected, fiscally responsible with a noble mission—to do what's right for kids!

Washington University -Department of Psychological & Brain Sciences

http://psychweb.wustl.edu/

The Psychological & Brain Sciences Department at Washington University was established in 1924 and began granting graduate degrees in 1932. The Department has graduated about 700 Ph.D.'s and thousands of psychology majors. The Department has four primary research programs: Aging and Development, Clinical Psychology, Behavior Brain & Cognition, and Social and Personality Psychology. The Department of Psychological & Brain Sciences is home to outstanding research, a large, highquality undergraduate program, and an exceptionally strong graduate training program.

Washington University Provost's Office

https://provost.wustl.edu/

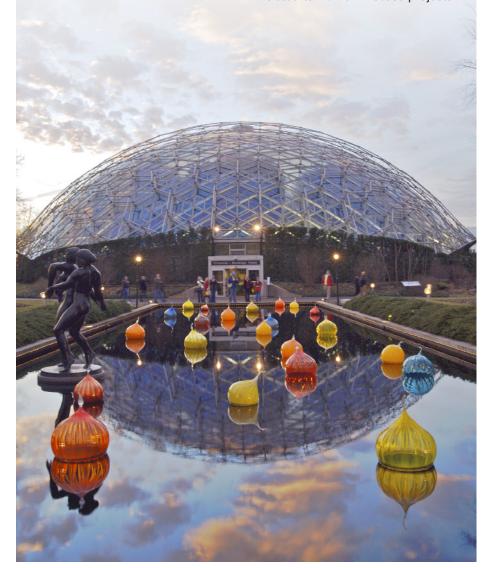
The provost is the chief academic officer of Washington University in St. Louis, responsible for teaching, learning, scholarship and research across the Danforth Campus. Included in his purview are academic planning, budgeting and facilities. University– wide curricular and co–curricular activities including undergraduate and graduate education, diversity, internationalization and outreach are key issues of the provost.

Washington University Tuberous Sclerosis Center https://tuberoussclerosiscenter. wustl.edu/

The Washington University Tuberous Sclerosis Center has the three-fold mission of providing comprehensive patient care for children and adults with tuberous sclerosis complex (TSC), performing clinical research and drug trials for TSC, and conducting basic science research focusing on new drug discovery for TSC.

Flux Congress Exhibitors

Electrical Geodesics. Inc. (EGI)


www.egi.com

EGI's dense array EEG with 32, 64, 128, or 256 channels provides EEG data with whole-head coverage and the highest spatial resolution available. EGI also provides advanced electrical source imaging software to visualize estimated sources of electrical activity in the cortex. EGI's complete Geodesic EEG Systems include the Geodesic Sensor Net for fast electrode application and optimal comfort, amplifiers for up to 256 channels, and software for acquisition, review, and analysis. Systems support multimodal imaging with MRI, MEG, TMS, and NIRS. EGI also offers stimulus presentation software and polygraphic input boxes. Stop by the EGI booth for a demo!

Human Connectome Project, Washington University School of Medicine

www.humanconnectome.org

The Human Connectome Project (HCP) is using advanced neuroimaging, plus extensive behavioral and heritability measures, to comprehensively map region-to-region brain connections and variability in 1,200 healthy adults (HCP Young Adult), 1000+ children/ adolescents (HCP Lifespan Developing), and 1000+ older adults (HCP Lifespan Aging). All data, methods, and tools for acquisition, processing, analysis, and visualization are being freely released to the scientific community through the **Connectome Coordinating Facility** (CCF). The CCF also houses data gathered through the Connectomes Related to Human Disease projects..

Royal Society Publishing https://royalsociety.org/journals/

The Royal Society publishes a number of life sciences journals relevant to this conference.

Please see the table literature or https://royalsociety.org/journals/ for more details.

St. Louis Children's Hospital Foundation

www.stlouischildrens.org/

With one of the largest pediatric neurology programs in the country, St. Louis Children's Hospital offers specialized neurological care for neurodevelopmental issues, epilepsy, cerebral palsy, and other neurological disorders. The 280-bed hospital includes a Level IV 85-bed newborn intensive care unit, 30-bed pediatric intensive care unit, 31-bed heart center, 6-bed pediatric bone marrow transplant unit and neuro-critical care program. Medical staff are faculty members of the top-ranked Washington University Medical School. Leaders in research, the Department of Pediatrics is recognized by the National Institutes of Health as a Child Health Research Center of Excellence in Developmental Biology.

Flux Congress

We are pleased to announce that the **5th Flux Congress** will take place in **Portland, Oregon**, USA, **September 16–18, 2017**.

THE SOCIETY FOR DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Conference Hosts

Nick Allen Damien Fair Bonnie Nagel Jenn Pfeiffer Fred Sabb

Abstract Submission and Registration will open March, 2017

www.fluxsociety.org

Thank you to our Sponsors

Developmental Cognitive Neuroscience Journal

Washington University Tuberous Sclerosis Center

Thank you to our Exhibitors

