49 research outputs found

    Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements

    Get PDF
    While quantum mechanics imposes a fundamental limit on the precision of interferometric measurements of mechanical motion due to measurement backaction, the nonlinear nature of the coupling also leads to parametric instabilities that place practical limits on the sensitivity by limiting the power in the interferometer. Such instabilities have been extensively studied in the context of gravitational wave detectors, and their presence has recently been reported in Advanced LIGO. Here, we observe experimentally and describe theoretically a new type of optomechanical instability that arises in two-tone backaction-evading (BAE) measurements, designed to overcome the standard quantum limit, and demonstrate the effect in the optical domain with a photonic crystal nanobeam, and in the microwave domain with a micromechanical oscillator coupled to a microwave resonator. In contrast to the well-known oscillatory parametric instability that occurs in single-tone, blue-detuned pumping, which is characterized by a vanishing effective mechanical damping, the parametric instability in balanced two-tone optomechanics is exponential, and is a result of small detuning errors in the two pump frequencies. Its origin can be understood in a rotating frame as the vanishing of the effective mechanical frequency due to an optical spring effect. Counterintuitively, the instability occurs even in the presence of perfectly balanced intracavity fields, and can occur for both signs of detuning. We find excellent quantitative agreement with our theoretical predictions. Since the constraints on tuning accuracy become stricter with increasing probe power, it imposes a fundamental limitation on BAE measurements, as well as other two-tone schemes. In addition to introducing a new limitation in two-tone BAE measurements, the results also introduce a new type of nonlinear dynamics in cavity optomechanics

    Weak-Values Technique for Velocity Measurements

    Get PDF
    In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett 105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400  fm/s and show our estimator to be efficient by reaching its CramĂ©r–Rao bound

    Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models

    Get PDF
    Two phenomena can affect the transmission of a probe field through an absorbing medium in the presence of an additional field: electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS). Being able to discriminate between the two i

    Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Full text link
    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated

    Simulating the vibrational quantum dynamics of molecules using photonics

    Get PDF
    Advances in control techniques for vibrational quantum states in molecules present new challenges for modelling such systems, which could be amenable to quantum simulation methods. Here, by exploiting a natural mapping between vibrations in molecules and photons in waveguides, we demonstrate a reprogrammable photonic chip as a versatile simulation platform for a range of quantum dynamic behaviour in different molecules. We begin by simulating the time evolution of vibrational excitations in the harmonic approximation for several four-atom molecules, including H2CS, SO3, HNCO, HFHF, N4 and P4. We then simulate coherent and dephased energy transport in the simplest model of the peptide bond in proteins—N-methylacetamide—and simulate thermal relaxation and the effect of anharmonicities in H2O. Finally, we use multi-photon statistics with a feedback control algorithm to iteratively identify quantum states that increase a particular dissociation pathway of NH3. These methods point to powerful new simulation tools for molecular quantum dynamics and the field of femtochemistry

    Floquet dynamics in the quantum measurement of mechanical motion

    No full text
    The radiation-pressure interaction between one or more laser fields and a mechanical oscillator gives rise to a wide range of phenomena: from sideband cooling and backaction-evading measurements to pondermotive and mechanical squeezing to entanglement and motional sideband asymmetry. In many protocols, such as dissipative mechanical squeezing, multiple lasers are utilized, giving rise to periodically driven optomechanical systems. Here we show that in this case, Floquet dynamics can arise due to presence of Kerr-type nonlinearities, which are ubiqitious in optomechanical systems. Specifically, employing multiple probe tones, we perform sideband asymmetry measurements, a macroscopic quantum effect, on a silicon optomechanical crystal sideband-cooled to 40% ground-state occupation. We show that the Floquet dynamics, resulting from the presence of multiple pump tones, gives rise to an artificially modified motional sideband asymmetry by redistributing thermal and quantum fluctuations among the initially independently scattered thermomechanical sidebands. For pump tones exhibiting large frequency separation, the dynamics is suppressed and accurate quantum noise thermometry demonstrated. We develop a theoretical model based on Floquet theory that accurately describes our observations. The resulting dynamics can be understood as resulting from a synthetic gauge field among the Fourier modes, which is created by the phase lag of the Kerr-type response. This novel phenomenon has wide-ranging implications for schemes utilizing several pumping tones, as commonly employed in backaction-evading measurements, dissipative optical squeezing, dissipative mechanical squeezing and quantum noise thermometry. Our observation may equally well be used for optomechanical Floquet engineering, e.g. generation of topological phases of sound by periodic time-modulation

    Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced transparency models

    No full text
    Paper IA_6_2 - From the session Coherent Effects (IA_6)If in general the transparency of an initially absorbing medium for a probe field is increased by the presence of a control field on an adjacent transition, two very different processes can be invoked to explain it. One of them is a quantum Fano interference between two paths in the three-level system, which occurs even at low control intensity and gives rise to electromagnetically-induced transparency (EIT), the other one is the appearance of two dressed states in the excited level at higher control intensity, corresponding to the Autler-Townes splitting (ATS). This distinction is particularly critical for instance for the implementation of slow light or optical quantum memories. In a recent paper, P. M. Anisimov, J. P. Dowling and B. C. Sanders proposed a quantitative test to objectively discerning ATS from EIT [1]. We experimentally investigated this test with cold atoms [2] and demonstrated that it is very sensitive to the specific properties of the medium. © 2013 IEEE.L. Giner, L. Veissier, B. Sparkes, A. Sheremet, A. Nicolas, O. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, J. Laura
    corecore