1,530 research outputs found

    Structure of MnO nanoparticles embedded into channel-type matrices

    Full text link
    X-ray diffraction experiments were performed on MnO confined in mesoporous silica SBA-15 and MCM-41 matrices with different channel diameters. The measured patterns were analyzed by profile analysis and compared to numerical simulations of the diffraction from confined nanoparticles. From the lineshape and the specific shift of the diffraction reflections it was shown that the embedded objects form ribbon-like structures in the SBA-15 matrices with channels diameters of 47-87 {\AA}, and nanowire-like structures in the MCM-41 matrices with channels diameters of 24-35 {\AA}. In the latter case the confined nanoparticles appear to be narrower than the channel diameters. The physical reasons for the two different shapes of the confined nanoparticles are discussed.Comment: 8 pages, including 9 postscript figures, uses revtex4.cl

    Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers

    Full text link
    We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.Comment: Submitted to the Proceedings of UHECR201

    Evidence for Orbital Motion of Material Close to the Central Black Hole of Mrk 766

    Full text link
    Time-resolved X-ray spectroscopy has been obtained for the narrow line Seyfert galaxy Mrk766 from XMM-Newton observations. We present analysis in the energy-time plane of EPIC pn data in the 4-8 keV band with energy resolution R~50. A component of Fe Ka emission detected in the maps shows a variation of photon energy with time that appears both to be statistically significant and to be consistent with sinusoidal variation. We investigate the interpretation that there exists a component of line emission from matter in a Keplerian orbit around a supermassive black hole. The orbit has a period ~165 ks and a line-of-sight velocity ~13,500 km/s. This yields a lower limit for the central mass of M > 4.9x10^5 solar masses within a radius of 3.6 x 10^13 cm (2.4 A.U.). The orbit parameters are consistent with higher black hole masses, but the lack of any substantial gravitational redshift of the orbit implies an upper limit to the black hole mass of 4.5x10^7 solar masses.Comment: 20 pages, 6 figures (some colour). Accepted for publication in A&A. Only minor changes since V1 (including reordering of Figs 1a & b

    Detection of a Fully-resolved Compton Shoulder of the Iron K-alpha Line in the Chandra X-ray Spectrum of GX 301-2

    Full text link
    We report the detection of a fully-resolved, Compton-scattered emission line in the X-ray spectrum of the massive binary GX 301-2 obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The iron K-alpha fluorescence line complex observed in this system consists of an intense narrow component centered at an energy of E = 6.40 keV and a redward shoulder that extends down to ~6.24 keV, which corresponds to an energy shift of a Compton back-scattered iron K-alpha photon. From detailed Monte Carlo simulations and comparisons with the observed spectra, we are able to directly constrain the physical properties of the scattering medium, including the electron temperature and column density, as well as an estimate for the metal abundance.Comment: 13 pages, 4 figures, 1 table, accepted for publication in ApJ Lette

    Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates

    Get PDF
    Fentanyl is a powerful opiate analgesic typically used for the treatment of severe and chronic pain, but its prescription is strongly limited by the well-documented side-effects. Different approaches have been applied to develop strong analgesic drugs with reduced pharmacologic side-effects. One of the most promising is the design of multitarget drugs. In this paper we report the synthesis, characterization and biological evaluation of twelve new 4-anilidopiperidine (fentanyl analogues). In vivo hot-Plate test, shows a moderate antinociceptive activity for compounds OMDM585 and OMDM586, despite the weak binding affinity on both Ό and Ύ-opioid receptors. A strong inverse agonist activity in the GTP-binding assay was revealed suggesting the involvement of alternative systems in the brain. Fatty acid amide hydrolase inhibition was evaluated, together with binding assays of cannabinoid receptors. We can conclude that compounds OMDM585 and 586 are capable to elicit antinociception due to their multitarget activity on different systems involved in pain modulation. © 2016 Informa UK Limited, trading as Taylor & Francis Group

    Supernova Simulations and Strategies For the Dark Energy Survey

    Get PDF
    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05<z<1.2, and 2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.Comment: 46 pages, 30 figures, resubmitted to ApJ as Revision 2 (final author revision), which has subtle editorial differences compared to the published paper (ApJ, 753, 152). Note that this posting includes PDF only due to a bug in either the latex macros or the arXiv submission system. The source files are available in the DES document database: http://des-docdb.fnal.gov/cgi-bin/ShowDocument?docid=624

    Comments on Gluino Condensates in N=1/2 SYM Theory

    Full text link
    Using Ward identities of N=1/2 supersymmetric Yang-Mills theory, we show that while the partition function and antichiral gluino condensates remain invariant under the CC deformation, chiral gluino correlators can get contributions from all gauge fields with instanton numbers k≀1k\leq 1. In particular, a Ward identity of the U(1)RU(1)_R symmetry allows us to determine the explicit dependence of chiral gluino correlators on the deformation parameter.Comment: 11 pages, 4 figures, small changes, added a referenc

    Galaxy Zoo Supernovae

    Get PDF
    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.Comment: 13 pages, 10 figures, accepted MNRA
    • 

    corecore