90 research outputs found

    Onset of Convection in a Nanofluid Saturated Porous Layer with Temperature Dependent Viscosity

    Get PDF
    The effect of nanofluid viscosity varying exponentially with temperature on the onset of convection in a layer of nanofluid saturated Darcy porous medium is investigated. The nanoparticle flux is zero condition on the boundaries is invoked to account for physically realistic situation. The resulting eigenvalue problem is solved numerically using the Galerkin method. It is observed that the instability sets in only as stationary convection and the occurrence of oscillatory convection is ruled out. The effect of viscosity parameter on the characteristics of stability is found to be significant and dual in nature. The onset of convection is hastened and the size of convection cells is enlarged with an increase in the value of modified diffusivity ratio, concentration Darcy-Rayleigh number, the modified particle density increment parameter and the Lewis number

    Onset of Surface Tension Driven Convection in a Fluid Layer Overlying a Layer of an Anisotropic Porous Medium

    Get PDF
    The paper deals with the criterion for the onset of surface tension-driven convection in the presence of temperature gradients in a two-layer system comprising a fluid saturated anisotropic porous layer over which lies a layer of fluid. The lower rigid surface is assumed to be insulated to temperature perturbations, while at the upper non-deformable free surface a general thermal condition is invoked. Both the Beavers-Joseph and the Jones conditions have been used at the interface to know their preference and prominence in the study of the problem. The resulting eigenvalue problem is solved exactly and also by regular perturbation technique when both the boundaries are insulating to temperature perturbations. It is found that the depth of the relative layers, mechanical and thermal anisotropy parameters have a profound effect on the stability of the system. Decreasing the mechanical anisotropy parameter and increasing the thermal anisotropy parameter leads to stabilization of the system. Besides, the possibility of control of Marangoni convection by suitable choice of physical parameters is discussed in detail

    Effect of Cubic Temperature Profiles on Ferro Convection in a Brinkman Porous Medium

    Get PDF
    The effect of cubic temperature profiles on the onset ferroconvection in a Brinkman porous medium in presence of a uniform vertical magnetic field is studied. The lower and upper boundaries are taken to be rigid-isothermal and ferromagnetic. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind as trial functions is employed to extract the critical stability parameters numerically. The results indicate that the stability of ferroconvection is significantly affected by cubic temperature profiles and the mechanism for suppressing or augmenting the same is discussed in detail. It is observed that the effect of Darcy number magnetic number and nonlinearity of the fluid magnetization parameter is to hasten, while an increase in the ratio of viscosity parameter and Biot number is to delay the onset of ferroconvection in a Brinkman porous medium. Further, increase in and decrease in is to decrease the size of the convection cells

    Effect of Horizontal AC Electric Field on the Stability of Natural Convection in a Vertical Dielectric Fluid Layer

    Get PDF
    The stability of buoyancy-driven parallel shear flow of a dielectric fluid confined between differentially heated vertical plates is investigated under the influence of a uniform horizontal AC electric field. The resulting generalized eigenvalue problem is solved numerically using Chebyshev collocation method with wave speed as the eigenvalue. The critical Grashof number Gc, the critical wave number αc and the critical wave speed cc are computed for wide ranges of AC electric Rayleigh number Rea and the Prandtl number Pr. Based on these parameters, the stability characteristics of the system are discussed in detail. It is found that the AC electric Rayleigh number is to instill instability on convective flow against both stationary and travelling-wave mode disturbances. Nonetheless, the value of Prandtl number at which the transition from stationary to travelling-wave mode takes place is found to be independent of AC electric Rayleigh number. The streamlines and isotherms presented demonstrate the development of complex dynamics at the critical state

    Structural and properties of Zn-Al2O3-SiC nano-composite coatings by direct electrolytic process

    Get PDF
    In this paper, Zn-SiC and Zn-Al2O3-SiC composite coating were fabricated by electrodeposition technique from sulfates bath. The resulting composite coating was carried out by adding Al2O3/SiC particulate to a zinc-containing bath. The properties of the composite coating were investigated by SEM equipped with EDS, XRD, and AFM. The electrochemical behavior of the coating alloy was evaluated in 3.65 % NaCl with linear polarization technique and mechanically examined by durascan microhardness tester. The morphology of the thermal treated coatings at 400 °C in 6 h was viewed with high optical microscope (OPM). The results show hardness, thermal stability, and anti-corrosion properties of Zn-Al2O3-SiC were improved significantly as against Zn- SiC coating matrixes. This was attributed to dispersive strengthening effect and grain induced effort of Al2O3/SiC particulate. The decrease in corrosion and thermal stability at 15 g/L of SiC concentration may be as a result of agglomeration and the superimposed particle in the plating bath

    Effect of WO3 Nanoparticle Loading on the Microstructural, Mechanical and Corrosion Resistance of Zn Matrix/TiO2-WO3 Nanocomposite Coatings for Marine Application

    Get PDF
    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics

    Trade-Offs Between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What\u27s behind the term?” by Pawlowski et al., (2020)

    Get PDF
    In a recent paper, “Environmental DNA: What\u27s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring,” Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived

    Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia and myocarditis are the most commonly reported diseases due to <it>Histophilus somni</it>, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in <it>H. somni </it>using traditional methods. Analyses of the genome sequences of several <it>Pasteurellaceae </it>species have provided insights into their biology and evolution. In view of the economic and ecological importance of <it>H. somni</it>, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the <it>Pasteurellaceae</it>.</p> <p>Results</p> <p>The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the <it>Pasteurellaceae</it>, several <it>H. somni </it>genes that may encode proteins involved in virulence (<it>e.g</it>., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor.</p> <p>Conclusions</p> <p>Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two <it>H. somni </it>strains.</p
    corecore