
 

 
Journal of Applied Fluid Mechanics, Vol. 9, No. 6, pp. 3073-3086, 2016.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.29252/jafm.09.06.26051 
 

Effect of Horizontal AC Electric Field on the Stability of 

Natural Convection in a Vertical Dielectric Fluid Layer 

 

B. M. Shankar1†, J. Kumar2, I. S. Shivakumara3 and S. B. Naveen Kumar1 

1Department of Mathematics, PES University, Bangalore 560 085, India.  
2ISRO Satellite Centre, Bangalore 560 017, India 

3Department of Mathematics, Bangalore University, Bangalore 560 001, India 

†Corresponding Author Email: bmshankar@pes.edu 

(Received December 28, 2015; accepted March 2, 2016) 

ABSTRACT 

 

The stability of buoyancy-driven parallel shear flow of a dielectric fluid confined between differentially 

heated vertical plates is investigated under the influence of a uniform horizontal AC electric field. The 

resulting generalized eigenvalue problem is solved numerically using Chebyshev collocation method with 

wave speed as the eigenvalue. The critical Grashof number Gc, the critical wave number αc and the critical 

wave speed cc are computed for wide ranges of AC electric Rayleigh number Rea 
 
and the Prandtl number Pr. 

Based on these parameters, the stability characteristics of the system are discussed in detail. It is found that 

the AC electric Rayleigh number is to instill instability on convective flow against both stationary and 

travelling-wave mode disturbances. Nonetheless, the value of Prandtl number at which the transition from 

stationary to travelling-wave mode takes place is found to be independent of AC electric Rayleigh number. 

The streamlines and isotherms presented demonstrate the development of complex dynamics at the critical 

state. 

 

Keywords: Natural convection; AC electric field; Vertical fluid layer; Linear stability.  

NOMENCLATURE 

a  vertical wave number 

c  wave speed 

rc  phase velocity 

ic  growth rate 

/D d dx  differential operator 

E  root-mean-square value of the 

electric field 

0E  root-mean-square value of the 

electric field at  x = 0 

ef  force of electrical origin 

g
 

acceleration due to gravity 

G  Grashof number 

h  half- width of the dielectric fluid 

layer 

p  pressure 

P  modified pressure 

Pr  Prandtl number 

q  velocity vector 

eaR  AC electric Rayleigh number 

t  time 

T  temperature 

1T  temperature of the left boundary 

2T  temperature of the right boundary 

V  root-mean-square value of the 

electric potential 

1V  electric potential of the left 

boundary 

2V  electric potential of the right 

boundary 

bW  basic velocity 

 , ,x y z  Cartesian co-ordinates 

 
  thermal expansion coefficient 

  thermal expansion coefficient of 

dielectric constant 

  dielectric constant 

0  reference dielectric constant at T0 

  thermal diffusivity 

  electrical conductivity of the fluid 

  fluid viscosity 

  kinematic viscosity 

  stream function  

  amplitude of vertical component 

of perturbed stream function 
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  amplitude of perturbed electric  

potential 

  fluid density 

 

 

e  free charge density 

0  reference density at 
0T  

  amplitude of perturbed 

temperature 

 

1. INTRODUCTION 

Hydrodynamic stability is one of the fundamental 

topics in fluid mechanics and the fluid flows in 

channels have been studied extensively 

(Chandrasekhar, 1981; Drazin and Reid, 2004). 

Fluid flows in many geophysical and astrophysical 

phenomena are maintained by buoyancy forces, but 

the role of these forces is generally strongly 

modified by co-existing shear, rotation of the 

system as a whole, processes at a free surface and 

so on. Natural convection of a viscous fluid in a 

vertical fluid layer, whose walls are held at different 

temperatures, provides one such simplest cases of 

an interaction between buoyancy and shearing 

forces. Instability of the base flow in such a fluid 

layer occurs when the Grashof number becomes 

greater than a certain critical value and the stability 

characteristics of the Newtonian fluid flow in the 

conduction regime are well established (Korpela et 

al., 1973; Bergholz, 1978). The most interesting 

observation is that the type of instability is 

determined by the magnitude of the Prandtl number 

Pr. The critical disturbance modes are found to be 

stationary when Pr < 12.7, but they are travelling 

waves when Pr >12.7. Vest and Arpaci (1969) 

studied the onset of stationary instability in the 

boundary-layer regime and reported fair agreement 

between their theoretical and experimental values 

for the critical Grashof number. Later on, using the 

power series method, Ruth (1979) obtained 

essentially exact values of the stability condition for 

0.00001 < Pr < 10.  

A considerable number of theoretical and numerical 

studies on the stability of fluid flows have also been 

devoted to the interaction of electromagnetic fields 

with fluids. The stability of the flow of an 

electrically conducting fluid between parallel planes 

under a transverse magnetic field has been studied 

by Lock (1955), Potter and Kutchey (1973) and 

Takashima (1994, 1996) and showed that a 

transverse magnetic field has a powerful stabilizing 

influence on this type of flow. If the fluid is 

dielectric with low electrical conductivity then the 

electric forces play a major role rather than 

magnetic forces in driving the motion.  

Electrohydrodynamic (EHD) stability of channel 

flow has attracted much attention, particularly 

because of its use in the field of micro fluidics. For 

instance, in many micro-electro-mechanical-

systems (MEMS) devices, rapid mixing is highly 

desired and can be achieved by applying an electric 

field, as discussed in the experiments of Moctar et 

al. (2003), Glasgow et al. (2004) and Lin et al. 

(2004). A brief discussion on the applications of 

EHD instability has been presented by Lin (2009). 

The stability of a plane convective flow of dielectric 

fluid in a vertical layer has been investigated by 

Takashima and Hamabata (1984). They found that a 

transition from stationary to travelling-wave 

instability occurs at a certain value of Pr between 

12.4 and 12.5 which was later supported by Chen 

and Pearlstein (1989). Fujimura (1990) showed that 

the transition value of Pr is given by 12.45425644. 

Smorodin (2001) investigated the instability of 

convective liquid dielectric flow in the alternating 

field of a vertical capacitor with boundaries heated 

to different temperatures. EHD instability of an 

inviscid fluid in the presence of an electric field and 

space variation of electrical conductivity is studied 

by Shubha et al. (2008). Rudraiah et al. (2011) 

investigated EHD stability of couple stress fluid 

flow in a horizontal channel occupied by a porous 

medium using energy method. The effect of vertical 

AC/DC electric field on electrothermal convection 

has been discussed extensively (Turnbull, 1969; 

Stiles et al., 1993; Shivakumara et al., 2007, 2012, 

2013, Rana et al., 2015; Chand et al., 2015; Chand 

2015).  

Heat transfer by means of thermal convection may 

not meet the requirements in most of the practical 

situations particularly in MEMS. In such 

circumstances, EHD enhanced heat transfer 

emerges as an important alternative method to 

enhance heat transfer. The intent of the present 

paper is to investigate the stability of natural 

convection in a vertical dielectric fluid layer under 

the influence of horizontal AC electric field. The 

vertical plates are maintained at constant but 

different temperatures and the normal electric field 

is held constant on the plates and as a result there 

exists variation in the dielectric constant which 

eventually causes electro-thermo-hydrodynamic 

instability by the dielectrophoretic force acting in 

the bulk of the fluid. The resulting eigenvalue 

problem is solved numerically using the Chebyshev 

collocation method and the existing results in the 

literature are obtained as limiting cases from the 

present study. 

2. PROBLEM FORMULATION AND 

THE BASIC STATE 

The physical configuration is as shown in Fig.1. We 

consider an incompressible dielectric fluid of 

thickness 2h  confined between two parallel 

vertical plates at x h= ± ,  subject to a uniform AC 

electric field applied across the layer; the left 

surface is maintained at fixed temperature 1T  and 

fixed electric potential 1( 0)V = , whereas the plate 

at x h=  is maintained at fixed temperature 

2T (> 1T ) and at an alternating (60 Hz) potential 

whose root-mean-square value is 2V . A Cartesian 

coordinate system (x, y, z) is chosen with the origin 

in the middle of the vertical fluid layer, where the 

x -axis is taken perpendicular to the plates and the 
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z-axis is vertically upwards, opposite in direction to 

the gravity. The relevant basic equations under the 

Oberbeck-Boussinesq approximation are 

(Chandrasekar, 1981; Shivakumara et al., 2007): 

0q                                                                  (1) 

  2

0 e

q
q q p g q f

t
  

 
         

        (2)  

  2T
q T T

t



   


                                          

(3) 

  0 01 T T    
                                          

(4) 

 

 
Fig. 1. Physical configuration. 

 

where ( , , )q u v w  the velocity vector, T the 

temperature, p  the pressure,  the fluid density, 

 the thermal diffusivity,   the fluid viscosity, g  

the acceleration due to gravity,  the thermal 

expansion coefficient, 0  the density at reference 

temperature  0T T , and ef  the force of electrical 

origin which can be expressed as (Landau and 

Lifshitz, 1960) 

 1 1

2 2
e ef E E E E E


  



 
       

 
.       (5) 

Here E  is the root-mean-square value of the 

electric field, e  is the free charge density and   

is the dielectric constant. The electrical force ef  

will have no effect on the bulk of the dielectric fluid 

if the dielectric constant   and the electrical 

conductivity  are homogeneous. Since   and   
are functions of temperature, a temperature gradient 

applied to a dielectric fluid produces a gradient in 

  and . The application of DC electric field then 

results in the accumulation of free charge in the 

liquid. The free charge increases exponentially in 

time with a time constant   , which is known as 

the electrical relaxation time. If an AC electric field 

is applied at a frequency much higher than the 

reciprocal of the electrical relaxation time, the free 

charge does not have time to accumulate. Moreover, 

the electrical relaxation time of most dielectric 

liquids appear to be sufficiently long to prevent the 

buildup of free charge at standard power line 

frequencies. At the same time, dielectric loss at 

these frequencies is so low that it makes no 

significant contribution to the temperature field. 

The Coulomb force term eE  in Eq. (5) is the force 

per unit volume on a medium containing free 

electric charge of density
e . It is the strongest 

EHD force term and usually dominates when DC 

electric fields are present in dielectric fluids. The 

second term in Eq. (5), called dielectrophoretic 

force term, is due to the force exerted on a dielectric 

fluid by a non-uniform electric field. It is usually 

weaker than the free charge force term and only 

dominates when an AC electric field is imposed on 

a dielectric fluid. Therefore, the Coulomb force 

term has been neglected in Eq. (5) and only the 

dielectrophoretic force term is retained in Eq. (5). It 

is seen that the dielectrophoretic force term depends 

on ( E E ) rather than E . Since the variation of E  

is very rapid, the root-mean-square value of E  is 

used as the effective value in determining fluid 

motion. In other words, one can treat the AC 

electric field as the DC electric field whose strength 

is equal to the root-mean-square value of the AC 

electric field (Takashima and Aldridge, 1976). The 

last term in Eq. (5) is called the electrostriction 

term. This term can be conveniently clubbed with 

the pressure in Eq. (5) and, because pressure 

amounts to an extra variable in incompressible 

flow, seems not to have any influence on the 

hydrodynamics.   

Since there is no free charge, the relevant Maxwell 

equations are  

0 orE E V    , ( ) 0E  .             (6a,b) 

where V  the root-mean-square value of the electric 

potential. The dielectric constant is assumed to be a 

linear function of temperature in the form 

0 0[1 ( )]T T     , where  (>0)  the  thermal 

expansion coefficient of dielectric constant and is 

assumed to be small. For example, for 10 cs 

Silicone oil 3 12.86 10 K     and 

11 12.6 10 Fm    .
 
The basic state is given by 

 2 2

12
b

g
W h x x

 


  ,

 

2
0 0

0const
2 1

b
E

P gz
x





  


,

0 / 2; /bT T x T hb b- = = D , 0 1
2

b

x
 

 
  

 
, 

0 1
2

b

x
 

 
  

 
, 0 ˆ

1 / 2
b

E
E i

x



,  

02 1 / 2
log

1 / 2
b

E x
V

h



 

 
  

 
                                 (7) 
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where 0 2( / 2)log[(1 / 2) /(1 / 2)]E V h h      

the root-mean-square value of the electric field at 

0x  , 0( / )   the kinematic viscosity and 

  0.5 /P p E E        the modified 

pressure.  

3. PERTURBED STATE AND THE 

LINEAR STABILITY EQUATIONS 

To study the stability of the basic state, an 

infinitesimal disturbance on the base flow is 

superimposed in the form  

,bq q q  ( , )bP P x z P  , 'bV V V  ,

,bT T T  ,b    b    .                (8) 
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Fig. 2. Velocity profile 
bW of the base flow for 

various values of (a) Grashof number G  (b) 

Prandtl number Pr . 

 
Substituting Eq.(8) into Eqs.(1)-(3), linearizing, 

eliminating the pressure from the momentum 

equation, introducing a stream function  , ,x z t  

through / , /u z w x        and employing 

the normal mode analysis procedure in the form  

     
, , , , ( )

ia z ct
T V x e  


  , the stability 

equations in dimensionless form can then be shown 

to be 

   

 

2 2 2

2
2 2

1

2

1

b ea
b

W R
c D a D W D

Pr Pr

D a GPrD
ia

 



 
       

 

 
    

 

(9) 

 2 21 1

2

bW
c D a

Pr Pr iaPr
 

 
     

 
           (10) 

 2 2 0D D a                                             (11) 

where 2 2 2 4
0 0/ , eaD d dx R E h      the AC 

electric Rayleigh number, Pr    the Prandtl 

number, 4 2G g h    the Grashof number, 

r ic c ic  is the wave speed and a  is the vertical 

wave number. It should be noted here that the basic 

velocity in dimensionless form is 

  2/12 1bW G Pr x x  . 

Equations (9) - (11) are to be solved subject to 

appropriate boundary conditions. Since the 

isothermal vertical plates are rigid and the normal 

electric field is held constant on the plates, the 

associated boundary conditions are 

0 at 1D D x         .                       (12) 

 

1.2 1.3 1.4 1.5 1.6
960

970

980

990

1000

 

 

 

 

a

 G

2Pr 

0

50

100

500

eaR 

(a)

 
 

0.76 0.80 0.84 0.88
303

304

305

306

307

308

0

50

100

500

eaR 

a

  

 

20Pr  (b)

 
Fig. 3. Neutral stability curves. Stationary modes 

(––––) and travelling-wave modes 

(- - - -). 

4. METHOD OF SOLUTION 

Equations (9) - (11) together with the boundary 



B. M. Shankar et al. / JAFM, Vol. 9, No. 6, pp. 3073-3086, 2016.  

 

3077 

conditions (12) constitute an eigenvalue problem 

which has to be solved numerically. The resulting 

eigenvalue problem is solved using Chebyshev 

collocation method. The kth order Chebyshev 

polynomial and the Chebyshev collocation points 

are respectively given by 

  1cos , cosk x k x      and 

   cos / , 0 1jx j N j N  . Here, the right and 

left wall boundaries correspond to 0j  and N , 

respectively. The field variable , and   can be 

approximated in terms of Chebyshev variable as 

follows 

       

   

0 0

0

, ,
N N

n j n j

j j

N

n j

j

x x x x

x x

   

  

 



   



 


          (13) 

The governing Eqs. (9) - (12) are discretized in 

terms of Chebyshev variable x  to get  

 

2 2

0

0

4 2

0 0

0

1

2

1
2

, 1 1 1

N
b

jk k j b j

k

N
ea

jk k j

k

N N

jk k j jk k

k k

N

jk k

k

W
c B a D W

Pr Pr

R
A

C a a B
ia

G Pr A j N

 







 



  
       

  

 
  

 

  
       

  

  





 



 (14)  

 

 

2

0

0

1

2

1
, 1 1 1

, 1 1 1

b
j j

N

jk k j

k

N

jk k

k

W
c

Pr Pr

B a j N
iaPr

G Pr A j N



 







 
   

 

 
    

 

  





   (15) 

 2

0 0

, 1 1 1
N N

jk k jk k j

k k

A B a j N  
 

 
    
 

         (16) 

0 0N   , 
0

0, 0 & 
N

jk k

k

A j N


    , 

0 0N   , 
0

0, 0 & 
N

jk k

k

A j N


                 (17) 

where  

 

 

 2

2

2

1

1 1
2 1

2 1
0

6

2 1

6

k j

j

k j k

j

j
jk

c
j k

c x x

x
j k N

xA

N
j k

N
j k N

 
 





     
 
  

 
  


,  

jk jm mkB A A   & jk jm mkC B B  .       

with 
2 0,

1 1 1
j

j N
c

j N


 

  
   

The above equations form the system of linear 

algebraic equations 

AX cBX                                                           (18)  

where c  is the eigenvalue and X  is the discrete 

representation of the eigenfunction; A  and B are 

square (complex) matrices of order 2( 1)N  .The 

eigenvalues and the eigenfunctions of the 

generalized eigenvalue problem (26) are determined 

with the aid of a QZ-algorithm which is available in 

the MATLAB software package in the form of built 

in function eig( ). The critical wave speed
cc , the 

corresponding critical Grashof number 
cG  and the 

wave number 
ca  are determined for various values 

of Prandtl number Pr and AC electric Rayleigh 

number eaR  following the procedure explained in 

Shankar et al. (2014a, b). 

5. RESULTS AND DISCUSSION 

The effect of uniform horizontal AC electric field 

on the stability of natural convection in a vertical 

dielectric fluid layer is investigated. The resulting 

eigenvalue problem is solved numerically using 

Chebyshev collocation method with wave speed 

as the eigenvalue. Critical Grashof number cG  

and critical wave speed 
cc are computed with 

respect to the wave number ‘ a ’for various values 

of AC electric Rayleigh number eaR . In most of 

the experiments, the depth over which the electric 

permittivity varies with temperature is generally in 

the order of millimeters and the kinematic 

viscosity and thermal diffusivity of the water-

borne liquid used for bio-fluidics are about 
7 29.7 10 /secm    and 7 21.4 10 /secm   , 

respectively. Thus the Prandtl number is 

approximately 7, is used to examine the instability 

characteristics of the system.  

Although the basic flow is independent of eaR , it is 

significantly influenced by G  and Pr . Figures 

2(a) and (b) respectively show the influence of G  

and Pr on 
bW . These figures indicate that decrease 

in G  and Pr  is to suppress the fluid flow. From 

the figures, it is also seen that, in general, the 

solution does not have symmetry with respect to x . 

This effect is due to the fixed direction of the 

gravitational field.  

The convergence of the numerical method 

employed is tested by varying the order of base 

polynomial. Tables1 (a) and (b) illustrate the 

convergence of numerical solution for both 

stationary and travelling-wave mode cases for 

some selected values of parameters. To account 

for all the harmonics in a complicated solution, a 

large number of terms have to be included in the 
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Table 1 (a) Order of polynomial independency (stationary case) 

N  
1, 100, 800, 2eaPr R G a     1, 500, 800, 2eaPr R G a     

ic  
rc  

ic  
rc  

5 -3.49104804 0 -2.81419066 0 

10 -2.65629461 0 -2.35092099 0 

15 -2.64890709 0 -2.35622640 0 

20 -2.65888456 0 -2.35639837 0 

25 -2.65893269 0 -2.35613876 0 

30 -2.65893099 0 -2.35614144 0 

35 -2.65893102 0 -2.35614382 0 

40 -2.65893109 0 -2.35614417 0 

45 -2.65893105 0 -2.35614419 0 

 
Table 1 (b) Order of polynomial independency (oscillatory case) 

N  
20, 100, 200, 0.8eaPr R G a     20, 500, 200, 0.8eaPr R G a     

ic  
rc  

ic  
rc  

5 -0.20306531 6.33035530 -0.20011071 6.33543156 

10 -0.17430796 6.30451192 -0.17979262 6.34922163 

15 -0.18753132 6.33482913 -0.18477346 6.33010841 

20 -0.18768827 6.33510498 -0.18459924 6.32715172 

25 -0.18778542 6.33599873 -0.18466634 6.32961864 

30 -0.18779243 6.33510042 -0.18464876 6.32964395 

35 -0.18779445 6.33511071 -0.18465482 6.32969732 

40 -0.18779572 6.33511043 -0.18465897 6.32969198 

45 -0.18779539 6.33511047 -0.18465829 6.32969186 

50 -0.18779535 6.33511045 -0.18465823 6.32969181 

55 -0.18779532 6.33511045 -0.18465825 6.32969180 

 
Table 2 Comparison of critical stability parameters 

eaR  Pr  
Chebyshev collocation method Galerkin method 

cG  ca  cc  cG  ca  cc  

0 

1 992.52946472 1.404 0 992.05636850 1.404 0 

5 982.99195862 1.384 0 982.51616156 1.384 0 

10 983.55348200 1.383 0 983.45694190 1.383 0 

15 487.16752625 0.608  14.72510713 486.70350504 0.609  14.69142688 

20 301.71983337 0.820  9.29210134 301.16313195 0.823  9.28312284 
 

100 

1 983.77495031 1.41 0 983.29598552 1.410 0 

5 981.16188049 1.384 0 980.68381047 1.385 0 

10 983.01658662 1.383 0 982.53865933 1.384 0 

15 486.97624251 0.608  14.7190561 485.48028117 0.609  14.68445735 

20 301.39884936 0.820  9.28177151 300.82542396 0.820  9.27498412 
 

500 

1 946.66938782 1.432 0 946.16446367 1.433 0 

5 973.74763489 1.390 0 973.26786558 1.391 0 

10 979.33311461 1.383 0 978.85510123 1.385 0 

15 486.13243103 0.609  14.69075708 484.72027278 0.609  14.66033584 

20 300.08049011 0.825  9.23496285 299.54003489 0.823  9.22083842 
 

 
expansion. We have chosen different orders of 

Chebyshev polynomials and four digits point 

accuracy is achieved by retaining 30 terms in Eq. 

(13). As the number of terms increases in Eq. (13),  
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Table 3 The effect of 
eaR  on the values of  Pr , cG , ca and cc  

eaR  Pr  cG  ca  cc  

0 

1 992.52946472 1.404 0 

5 982.99195862 1.384 0 

10 983.55348200 1.383 0 

12.6 984.09135449 1.383 0 

12.7 984.09135447 1.383 0 

12.8 831.82237442 0.400  24.830077 

13 769.99223337 0.420  23.041856 

15 487.16752634 0.607  14.725107 

20 301.71983348 0.820  9.292101 

300 

1 965.66581734 1.420 0 

5 977.47001656 1.387 0 

10 981.17637632 1.384 0 

12.6 981.93626478 1.383 0 

12.7 981.9576263 1.383 0 

12.8 831.1519623 0.397  24.824203 

13 769.1402435 0.424  23.001328 

15 486.5932465 0.607  14.708759 

20 300.7320404 0.821  9.259499 

500 

1 946.66938782 1.432 0 

5 973.74763489 1.390 0 

10 979.33311461 1.383 0 

12.6 980.4698944 1.386 0 

12.7 980.5019379 1.385 0 

12.8 830.8589935 0.397  24.815596 

13 768.9434052 0.424  22.995294 

15 486.13243103 0.609  14.690757 

20 300.08049011 0.825  9.234962 

 

 

the results found to remain consistent and accuracy 

improved up to 7 digits for 40N   and 50N  , 

respectively for stationary and travelling-wave 

mode cases. Thus more number of terms in Eq. (13) 

is required for convergence if the instability is via 

travelling-wave mode. By rigorous computational 

analysis, it was found that accurate solutions up to 8 

digits could be reached by taking 60 terms in the 

Chebyshev collocation method and so for all further 

studies N is fixed at 60. To know the accuracy of 

the method employed to extract the stability 

parameters, the results are also obtained using 

Galerkin method (see Appendix A) with Legendre 

polynomials as trial functions for a representative 

set of parametric values and compared in Table 2. 

From the Table it is seen that the results are in good 

agreement.In Table 3, the values of cG , ca  and 

cc are tabulated for different values of eaR and 

Pr ranging from 1 to 20 as the magnitude of Pr  

determines the mode of instability. The results for 

eaR = 0 correspond to an ordinary viscous fluid. It 

is observed that the critical disturbance modes are 

stationary when 12.7Pr   and they are travelling 

waves when 12.7Pr  ; a well-established result in 

the literature (Korpela et al., 1973; Bergholz, 1978). 

Interestingly the value of Prandtl number at which 

transition from stationary to travelling-wave 

instability occurs remain invariant for all values of 

eaR
 
considered. Nonetheless, the values of critical 

stability parameters vary with eaR . The neutral 

stability curves in the ( , )G a - plane are displayed in 

Figs. 3(a) and (b) for different values of eaR
 
for 

Pr = 2 and 20, respectively. The neutral stability 

curves exhibit single but different minimum with 

respect to the wave number for various values 

of eaR  and Pr . The portion below each neutral 

curve corresponds to stable region and the region 

above corresponds to instability. It may be noted 

that, increase in eaR  and Pr leads to decrease the 

region of stability. 

Figures 4(a) and (b) illustrate the variation of cG  

and the corresponding ca  as a function of Pr  for 

different values of eaR . For a fixed value of eaR , it 

is observed that the dependence of cG  upon Pr  is 

very weak till 12.7Pr  and exceeding which 

cG decreases suddenly. In other words, the Prandtl 

number shows no significant effect if the 
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Fig. 4. Variation of (a) critical Grashof number 

cG , (b) critical wave number ca and (c) critical wave 

speed 
cc with the Prandtl number Pr for various values of AC electric Rayleigh number

eaR . 

 

 

disturbances are stationary, while its effect is 

significant if the disturbances are via travelling-

wave modes. This may be due to the fact that the 

energy for stationary instability at low to moderate 

Pr is derived mainly from the base flow velocity 

field through the action of disturbance Reynolds 

stresses at the mid-plane between the upward and 

the downward flowing convective streams. 

Although the effect of increasing AC electric 

Rayleigh number is to instill instability on the 

system, its effect is found to be not so significant. If 

the disturbances are stationary, the critical wave 

number decreases slowly with increasing Pr  while 

an opposite kind of behavior is noticed when the 

disturbances are travelling-wave modes (Fig. 4b). 

This is so for a fixed value of eaR . Besides, the  

critical wave number increases with increasing 

eaR only at lower values of Pr . Further inspection 

of the figure reveals that, through the transition, the 

wave number drops from 1.4 to 0.4 and then 

increases again for higher values of Pr . This 

indicates two different physical mechanisms of 

instability. As Pr increases, there is a tendency for 

more of the disturbance energy to originate from the 

potential energy associated with the buoyancy 

effect than as transfer from the kinetic energy of the 

base flow by the action of Reynolds stresses. 

The results regarding the nature of the travelling - 

wave instability summarized in Fig 5(c), indeed 

confirm this, which shows the variation of positive 

cc with Pr  for various values of eaR . The vertical 
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Fig. 5. Streamlines at eaR = 0 for different values of Pr . 
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Fig. 6. Isotherms at eaR = 0  for different values of Pr . 

 

 

lines represent the discontinuous changes in cc due 

to the transition from stationary to travelling – wave 

mode. From the figure it is observed that cc for the 

travelling – wave mode is a monotonically 

decreasing function of Pr . But the variation of eaR  

on cc  is found to be insignificant.  

To know the influence of Pr and eaR  on the  
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Fig. 7. Streamlines at eaR = 300  for different values of Pr . 
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Fig. 8. Isotherms for eaR = 300  for different values of Pr . 

 

 

disturbance flow and temperature, the 

corresponding streamlines and isotherms (Shankar 

et al. 2015, 2016) at the critical state for both 

stationary and travelling-wave modes are displayed 

in Figs. 5-10 for different values of Pr and eaR . 

Figures 5 and 6 show the results for eaR =0 (i.e.  

ordinary viscous fluids) for different values of Pr . 

For Pr =1, the flow pattern appears to be stationary 

cellular convection with an inclination in 

streamlines and isotherms as shown in Figs. 5(a) 
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Fig. 9. Streamlines at eaR = 500  for different values of Pr . 

 

 

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) Pr = 2= 0.06

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(c) Pr = 12.6= 0.008

-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

10

(e) Pr = 15= 0.02

x
-1 -0.5 0 0.5 1

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

(f) Pr = 25= 0.04

x

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

max
(a) Pr = 1= 0.02

z

-1 -0.5 0 0.5 1
0

2

4

6

8

10

12

14

16

(d) Pr = 12.8= 0.006

x

z

 

Fig. 10. Isotherms at eaR = 500  for different values of Pr . 
 

 

and 6(a), respectively.  

Further increase in Pr  (= 2 and 12.6) results to 

force the convective motion to move closer and 

become parallel at the center of the fluid layer and 

also convective cells become uni-cellular to bi-

cellular. This fact is evident from Figs. 5(b) and (c).  

For Pr =2, the isotherms concentrate in the vicinity 

of the hot wall (Fig. 6b) and become bi-cellular 

oblate triangles which are occupying almost the 

whole thickness of vertical fluid layer for Pr =12.6 
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(Fig. 6c). However, the strength of secondary flow 

for the streamlines and isotherms do not vary much 

as a function of Pr in the stationary region. An 

abrupt change could be seen in stability profile as 

the instability mode changes from stationary to 

travelling-wave mode. Here, the flow pattern and  

flow strength changes qualitatively as well as 

quantitatively as the mode changes from stationary 

to travelling-wave mode. In other words, the 

instability switches over from stationary to 

travelling-wave mode once the value of Pr  

exceeds 12.7. When Pr =12.8, convective cells 

become bi-cellular to uni-cellular in streamlines. 

Also, shape of the isotherms changes from bi-

cellular oblate triangles to uni-cellular oblate 

triangles and concentrates in the vicinity of the hot 

wall. It is further seen that the actual wavelength 

substantially larger in both streamlines and 

isotherms and at this stage 
max  increases from 

0.50 to 1.03. This fact is evident from Figs. 5(d) and 

6(d). Further increase in Pr  is seen to decrease the 

flow strength (Figs. 5e and f) and also to weaken 

the isotherms (Figs. 6e and f). Interestingly, 

secondary flow behavior remains invariant for all 

values of AC electric Rayleigh number considered. 

The streamlines and isotherms illustrated in Figs. 7-

10 for two values of eaR =300 and 500 also 

corroborate this behavior.  

6. CONCLUSIONS 

From the foregoing study, it is observed that a 

uniform AC electric field has no influence on the 

basic velocity distribution.  The instability sets in as 

stationary convection with critical Grashof number 

cG nearly independent of Pr  for values 

of 12.7Pr  . The wave length of the critical 

disturbances is slightly larger than twice the 

separation of the vertical plates.  For 12.7Pr  the 

instability sets in as a wave travelling in the vertical 

direction with a wave speed which is first less than 

the maximum base flow velocity but decreases with 

increasing Pr . For Pr close to 12.8 the 

wavelength of the critical wave is nearly 8 times the 

width between the plates. Finally, as the Pr  

increased, the instability becomes more thermal in 

its origin. Moreover, the value of Pr  at which 

transition from stationary to travelling-wave mode 

instability occurs remain invariant for all values of 

AC electric Rayleigh number. The effect of 

increasing AC electric Rayleigh number is to instill 

instability on the system but its effect is found to be 

not so significant. The streamlines and isotherms 

are found to mimic the behavior of stability curves 

observed before and after the change of mode of 

instability. Besides, a sudden change in streamlines 

and isotherms is observed both in their magnitude 

and pattern just before and after the transition mode. 

For the range of parametric values considered, 

convective cells found to appear both in bi-cellular 

as well as uni-cellular in nature. 
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Appendix A 

The resulting eigenvalue problem is solved using a 

simple but powerful Galerkin method. Accordingly, 

 x ,  x  and  x
 
are expanded in terms of 

Legendre polynomials in the form 

 

       
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1 1
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          (A1) 

with the corresponding base functions 

     
2

21n nx x P x   ,      21n nx x P x   ,  
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    (A2) 

 nP x  is the Legendre polynomial of degree n  and 

na are constants. It may be noted that    ,x x  

and  x  satisfies the boundary conditions. 

Equation (A1) is substituted into Eqs.(9) - (12) and 

the resulting error is required to be orthogonal to 
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     , ,m m mx x x 
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 (A5) 

in which the primed quantities denote 

differentiation with respect to x . 

 


