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The paper deals with the criterion for the onset of surface tension-driven convection in the presence of
temperature gradients in a two-layer system comprising a fluid saturated anisotropic porous layer over
which lies a layer of fluid. The lower rigid surface is assumed to be insulated to temperature perturba-
tions, while at the upper non-deformable free surface a general thermal condition is invoked. Both the
Beavers–Joseph and the Jones conditions have been used at the interface to know their preference and
prominence in the study of the problem. The resulting eigenvalue problem is solved exactly and also
by regular perturbation technique when both the boundaries are insulating to temperature perturba-
tions. It is found that the depth of the relative layers, mechanical and thermal anisotropy parameters have
a profound effect on the stability of the system. Decreasing the mechanical anisotropy parameter and
increasing the thermal anisotropy parameter leads to stabilization of the system. Besides, the possibility
of control of Marangoni convection by suitable choice of physical parameters is discussed in detail.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Convective instability in a fluid/porous layer may occur either
due to buoyancy forces or surface tension variations in the pres-
ence of temperature and/or concentration, gradients or combined
buoyancy and surface tension forces. Each of these convective
instability problems in a fluid layer has been studied extensively
in recent decades due to their promising applications in engineer-
ing and technology. Its counter part in a fluid saturated porous
medium has also been investigated extensively but majority of
the investigations pertain to buoyancy-driven flows. The develop-
ments in the field are amply documented in the literature [1–3].
Convective instability in a liquid saturated porous layer due to sur-
face tension and/or buoyancy forces has also been investigated but
it is still in much-to-be desired state [4–6] and references therein.

However, rapid developments in modern technologies during
the recent past have posed challenges in studying convective insta-
bility problems in more complicated two and multilayer fluid
dynamical systems. The use of such composite systems can be
found, for example, in the following applications: manufacture of
composite materials used in aircraft structures and automobile
ll rights reserved.

hanics, Department of Math-
ia.
S. Shivakumara), jinholee@
industries, geophysics, bioconvection, nuclear reactors, solid–matrix
heat exchangers, crystal growth, directional solidification of alloys
and electronics cooling. There exist several investigations pertaining
to convective instability in a two-layer system composed of a fluid
saturated porous layer over which lies a fluid layer and also different
systems of superposed porous and fluid layers.

Nield [7] has investigated the linear stability problem of
superposed fluid and porous layers with buoyancy and surface
tension effects at the deformable upper free surface by using the
Beavers–Joseph slip condition at the interface. The thermal stability
for different systems of superposed porous and fluid regions has
also been analyzed by Taslim and Narusawa [8]. Chen [9] has
implemented a linear stability analysis to investigate the effect of
throughflow on the onset of thermal convection in a fluid layer
overlying a porous layer with an idea of understanding the control
of convective instability by the adjustment of throughflow. McKay
[10] has considered the onset of buoyancy-driven convection in
superposed reacting fluid and porous layers. Straughan [11,12]
has studied a fundamental model for convection in a porous–fluid
layer system developed originally by Nield [7]. He has obtained the
eigenvalues and eigenfunctions numerically by utilizing the
Chebyshev tau method. In particular, the effect of surface tension
is also allowed for in the former paper, while in the latter paper,
the effect of variation of properties of relevant fluid and porous
material on the control of convection is discussed by considering
the upper surface to be fixed or stress free. Nield [13] has argued
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Nomenclature

a horizontal wave number,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þm2

p
A ratio of heat capacities
Bi Biot number, hd/j
D differential operator (d/dz)
d thickness of the fluid layer
dm thickness of the porous layer
Da Darcy number ðkv=d2

mÞ
h heat transfer coefficient
K
�

permeability tensor, kh ð̂îiþ ĵ̂jÞ þ kv k̂k̂
‘, m wave number in x and y-directions respectively
M Marangoni number rT (T0 � Tu)d/lj
p pressure
Pr Prandtl number for fluid layer, v/j
T temperature
T0 temperature at the interface
V
!

velocity vector (u, v, w)
W amplitude of perturbed vertical velocity

Greek symbols
b slip parameter
r2

h horizontal Laplacian operator (@2=@x2 þ @2=@y2)

r2 Laplacian operator (@2=@x2 þ @2=@y2 þ @2=@z2)
eT ratio of thermal diffusivities (j/jmv)
g thermal anisotropy parameter(jmh/jmv)
u porosity of the porous medium
j thermal diffusivity
j
�m effective thermal diffusivity tensor, jmh ð̂îiþ ĵ̂jÞ þ jmv k̂k̂
H amplitude of perturbed temperature
l fluid viscosity
qo fluid density
r temperature dependent surface tension
v kinematic viscosity(l/q0)
n mechanical anisotropy parameter(kh/kv)
f depth ratio(d/dm)

Subscripts
b basic state
h horizontal
‘ lower
m porous medium
u upper
v vertical
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about the modeling of Marangoni convection in a fluid saturated
porous medium and has suggested the consideration of composite
porous–fluid layer system in analyzing the problem. Khalili et al.
[14] have obtained the closed form solution for Chen’s model by
considering the upper and lower boundaries are insulating to tem-
perature perturbations. Carr [15] has studied penetrative convec-
tion via internal heating in a two-layer system in which a layer
of fluid overlies and saturates a porous medium. Shivakumara
et al. [16] have discussed the onset of Marangoni convection in
a composite fluid and porous layers, while Shivakumara and
Chavaraddi [17] have investigated the problem by considering
the deformation of the upper free surface. Recently, Alloui and
Vasseur [18] have reported an analytical study of the stability
and natural convection in a system consisting of a horizontal fluid
layer over a layer of saturated porous medium.

In all the above superposed fluid and porous layers problems,
the porous medium is considered to be isotropic. Nevertheless, in
many practical situations the porous materials are anisotropic in
their mechanical and thermal properties. Anisotropy is generally
a consequence of preferential orientation or asymmetric geometry
of porous matrix or fibers and is in fact encountered in numerous
systems in industry and nature. Anisotropy can also be a character-
istic of artificial porous materials like pelletting used in chemical
engineering process and fiber material used in insulating purposes.
During the solidification of alloys a dendritic region known as
mushy zone separating the melt from the solid forms and this re-
gion is regarded as a porous medium in which the permeability
and possibly the thermal conductivity may be anisotropic [19].
Castinel and Combarnous [20] were the first to study both experi-
mentally and theoretically the onset of convection in a layer of
porous medium with anisotropic permeability.

The onset of buoyancy-driven convection due to heating from
below in a system consisting of a fluid layer overlying a porous
layer with anisotropic permeability and thermal diffusivity has
been discussed by Chen et al. [21]. A review covering the major
developments in the field can be found in the book by Nield and
Bejan [3]. Nonetheless, Marangoni convection in superposed fluid
and mushy layer of mixed solid and liquid phases has become
increasingly important in crystal growth, solidification of molten
alloys, and other related areas with the advancement of space
experimentation under microgravity conditions. For instance there
are significant differences in the compositional homogeneity and
structural perfection between space grown and ground grown
crystals. The unfavorable buoyancy driven convection, sedimenta-
tion, and hydrostatic pressure in the process of crystal growth can
be suppressed only under reduced gravity environment and as a
consequence high quality crystals can be obtained. In view of this,
it is imperative to understand control (suppress or augment) of
Marangoni convection in the absence of buoyancy driven convec-
tion in such systems.

The intent of the present paper is, therefore, to study convective
instability in a composite system solely due to temperature depen-
dent surface tension effects at the upper free surface of a fluid layer
overlying an anisotropic porous layer. The effect of both mechani-
cal and thermal anisotropy is considered by simplifying it to a hor-
izontally isotropic case. Such a model is of physical relevance to
practical situations since many porous structures display anisot-
ropy where the permeability and in turn the thermal conductivity
in the vertical direction is different to that in the horizontal plane.
At the interface of the porous and fluid media both the Beavers–
Joseph [22] and the Jones [23] slip conditions are used and a mod-
ified Darcy equation is employed to describe the flow regime in the
anisotropic porous medium. The lower rigid boundary is insulated
to temperature perturbations, while a general thermal boundary
condition is invoked at the upper non-deformable free boundary.
The resulting eigenvalue problem is solved exactly and an analytic
expression for the Marangoni number is obtained and the results
are exhibited graphically to assess the effects of the depth ratio f,
mechanical anisotropy parameter n, thermal anisotropy parameter
g, Biot number Bi and the Darcy number Da along with other phys-
ical parameters. When both the boundaries are insulated to tem-
perature perturbations, an analytic expression for the critical
Marangoni number is also obtained using a regular perturbation
technique with wave number a as a perturbation parameter. It is
observed that the results obtained from the regular perturbation
technique are in excellent agreement with those obtained from
the exact analysis and also the existing results in the literature
are obtained as particular cases from the present study.
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2. Formulation of the problem

We consider a superposed horizontal anisotropic porous layer
of thickness dm underlying a fluid layer of thickness d with no lat-
eral boundaries as shown in Fig. 1. The lower boundary of the
anisotropic porous layer is taken to be rigid, while the upper free
boundary of the fluid layer at which the surface tension acts is as-
sumed to be non-deformable since for most liquids the capillary
number is very small, commonly ranging from 10�6 to 10�2. The
surface tension r is assumed to vary linearly with temperature in
the form r = r0 � rT(T � T0), where r0 is the unperturbed value
and �rT is the rate of change of surface tension with temperature.
The temperature of the lower and upper boundaries is taken to be
uniform and equal to Tl and Tu respectively with Tl > Tu. A Cartesian
coordinate system (x, y, z) is chosen such that the origin is at the
interface between the fluid layer and the anisotropic porous layer
and the z-axis is vertically upward.

The governing equations in the fluid and porous layers are:

Fluid layer

r � V
!
¼ 0 ð1Þ

q0
@ V
!

@t
þ ðV

!
�rÞV

!
2
4

3
5 ¼ �rpþ lr2 V

!
ð2Þ

@T
@t
þ ðV

!
�rÞT ¼ jr2T ð3Þ

Porous layer

rm � V
!

m ¼ 0 ð4Þ

q0

/
@V
!

m

@t
¼ �rmpm � lK

�
�1 � V

!
m ð5Þ

A
@Tm

@t
þ V

!
m � rm

� �
Tm ¼ rm � ðj�m � rmTmÞ ð6Þ

Here, V
!

is the velocity vector, p the pressure, T the temperature, l
the fluid viscosity, j the thermal diffusivity, u the porosity of the
porous medium, A the ratio of heat capacities and the subscript m
denotes the porous medium. The permeability and thermal diffusiv-
ity tensors of the porous medium are assumed to be constant and to
have principal axes aligned with the co-ordinate system so that
K
�
�1 ¼ K�1

x î̂iþ k�1
y ĵ̂jþ k�1

z k̂k̂ and j
�m ¼ jmx̂îiþ jmyĵ̂jþ jmzk̂k̂. We re-

strict to horizontal isotropic porous media and consider kx ¼ ky

ð¼ khÞ and jmx ¼ jmyð¼ jmhÞ. It may be noted that the permeability
and effective thermal diffusivity in the horizontal and vertical direc-
tions in an anisotropic porous layer are denoted by kh;jmh and kv ;

jmv respectively. The basic steady state is assumed to be quiescent
and the temperature distributions are found to be
Fig. 1. Geometrical configuration of the system.
TbðzÞ ¼ T0 �
ðT0 � TuÞz

d
0 � z � d ð7aÞ

TmbðzmÞ ¼ T0 �
ðT‘ � T0Þzm

dm
� dm � zm � 0 ð7bÞ

where T0 = (jmvT‘d + jTudm)/(jmvd + jdm) is the interface tempera-
ture and suffix b denotes the basic state. Determination of the onset
of convection is achieved by assuming that instability occurs by a
way of a perturbation to the existing basic state in the form

V
!
¼ V
!
0; T ¼ TbðzÞ þ T 0; p ¼ pbðzÞ þ p0; V

!
m ¼ V

!
0
m;

Tm ¼ TmbðzÞ þ T 0m; pm ¼ pmbðzÞ þ p0m ð8Þ

where the primed quantities are perturbations and assumed to be
small. Equation (8) is substituted in Eqs. (1)–(6) and linearized in
the usual manner. The pressure is eliminated from the momentum
equations by operating r�r� and only the vertical component
is retained. The variables are then non-dimensionalized using
d; d2

=j; j=d and T0 � Tu as the units of length, time, velocity, and
temperature in the fluid layer and dm; d2

m=jmv ; jmv=dm and T‘ � T0

as the corresponding characteristic quantities in the porous layer.
It may be noted that separate length scales are chosen for the two
layers so that each layer is of unit depth. In this manner, the detailed
flow fields in both fluid and porous layers can be clearly discerned for
all depth ratios, f = d/dm. The non-dimensional disturbance equa-
tions are then given by

1
Pr

@

@t
�r2

� �
r2w ¼ 0 ð9Þ

@

@t
�r2

� �
T ¼ w ð10Þ

Da
Prm

@

@t
þ nr2

mh þ
@2

@z2
m

 !
wm ¼ 0 ð11Þ

A
@

@t
� @2

@z2
m
� gr2

mh

 !
Tm ¼ wm ð12Þ

where Da ¼ kv=d2
m is the Darcy number, Pr = v/j is the Prandtl num-

ber, n = kh/kv is the mechanical anisotropy parameter, g = jmh/jmv is
the thermal anisotropy parameter. From Eqs. (9) and (11), it is ob-
served that the inertia has no influence on the stability criteria since
the basic state whose stability is being analyzed is quiescent.

The boundary conditions are:

w ¼ @T
@z
þ BiT ¼ 0 at z ¼ 1 ð13Þ

@2w
@z2 ¼ Mr2

hT at z ¼ 1 ð14Þ

wm ¼
@Tm

@zm
¼ 0 at z ¼ 1 ð15Þ

Here, Bi = hd/j is the Biot number and M = rT(T0 � Tu)d/lj is the
Marangoni number, where h is the heat transfer coefficient. At the
interface (i.e. at z = 0) the normal component of velocity, tempera-
ture, heat flux and the normal stress are continuous. Since there
is no viscous stress term in the Darcy equation, continuity of shear
stress across the interface cannot be used. Instead we use the exper-
imentally suggested condition proposed by Beavers–Joseph [22], or
its generalization due to Jones [23]. Accordingly, the following
conditions at the interface are used:
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w ¼ f
eT

wm ð16Þ

T ¼ eT

f
Tm ð17Þ

@T
@z
¼ @Tm

@zm
ð18Þ

3r2
h þ

@2

@z2

 !
@w
@z
¼ � f4

eT

1
Dan

� �
@wm

@zm
ð19Þ

@2w
@z2 � cr2

hw ¼ bfffiffiffiffiffiffiffiffiffi
Dan
p @w

@z
� bf3

eT

1ffiffiffiffiffiffiffiffiffi
Dan
p
� �

@wm

@zm
ð20Þ

where eT = j/jmv is the ratio of thermal diffusivities, b is the slip
parameter, r2

h ¼ @
2=@x2 þ @2=@y2 is the horizontal Laplacian opera-

tor. The constant c takes the value 0 for the Beavers–Joseph condi-
tion and 1 for the Jones condition. Since the principle of exchange of
instabilities holds for surface tension driven convection either in a
fluid layer (see [24,25]) or in a porous layer [4,5] heated form below,
it is reasonable to assume that it holds good even for the present
configuration as well. Further, the numerical calculations carried
out for a wide range of parameters by Straughan [11] also corrobo-
rates the validity of principle of exchange of stability for the super-
posed system. Hence, the time derivatives will be dropped
conveniently from Eqs. (11)–(14). Then performing a normal mode
expansion of the dependent variables in both fluid and porous lay-
ers as

ðw; TÞ ¼ WðzÞ;HðzÞ½ � exp½ið‘xþmyÞ� ð21Þ
ðwm; TmÞ ¼ ½WmðzmÞ;HmðzmÞ� exp½ið~‘xm þ ~mymÞ� ð22Þ

and substituting them in Eqs. (11)–(14) (with @/@ t = 0), we obtain
the following ordinary differential equations

ðD2 � a2Þ2W ¼ 0 ð23Þ
ðD2 � a2ÞH ¼ �W ð24Þ
ðD2

m � na2
mÞWm ¼ 0 ð25Þ

ðD2
m � ga2

mÞHm ¼ �Wm ð26Þ

where D and Dm denote differentiation with respect to z and zm,
respectively, a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þm2

p
and am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~‘2 þ ~m2

p
are correspondingly

the overall horizontal wave numbers in the fluid and porous layers.
If matching of the solutions in the two layers is to be possible, the
wave numbers must be same for the fluid and porous layers, so that
we have a/d = am/dm, and hence f = a/am.Using Eqs. (21) and (22),
the boundary conditions now become
L1 ¼
ða cosh aþ Bi sinh aÞðk3 � k4 cosh

ffiffiffigp am
� �

Þ þ cosh
ffiffiffigp am

� �
ðk1 cosh aþ k2 sinh aÞffiffiffigp amf sinh

ffiffiffigp am
� �

ða cosh aþ Bi sinh aÞ=eT þ a cosh
ffiffiffigp am

� �
ða sinh aþ Bi cosh aÞ
W ¼ DHþ BiH ¼ 0 at z ¼ 1 ð27Þ
D2W þMa2H ¼ 0 at z ¼ 1 ð28Þ
Wm ¼ DmHm ¼ 0 at zm ¼ �1 ð29Þ

and those at the interface (i.e. at z = 0) are

W ¼ f
eT

Wm ð30Þ

DH ¼ DmHm ð31Þ

H ¼ eT

f
Hm ð32Þ
½D2 � 3a2�DW ¼ � f4

eT Dan
DmWm ð33Þ

D2 þ ca2 � bfDffiffiffiffiffiffiffiffiffi
Dan
p

� �
W ¼ � bf3

eT
ffiffiffiffiffiffiffiffiffi
Dan
p DmWm ð34Þ

Thus the problem has now been reduced to an eigenvalue problem
consisting of a sixth order ordinary differential equation in the fluid
layer and a fourth order ordinary differential equation in the porous
layer subject to five boundary as well as five interface conditions.

3. Method of solution

The solution to the eigenvalue problem is obtained exactly. We
note that Eqs. (23) and (25) are independent of H and Hm so that
they can be solved for W and Wm to get

W ¼ A coshðazÞ þ D1 sinhðazÞ þ D2z coshðazÞ þ D3z sinhðazÞ½ � ð35Þ

Wm ¼ A
eT

f
cothðam

ffiffiffi
n

p
Þ sinhðam

ffiffiffi
n

p
zmÞ þ coshðam

ffiffiffi
n

p
zmÞ

h i
ð36Þ

where

D1 ¼
f3am

ffiffiffi
n
p

coth
ffiffiffi
n
p

am
� �

2a3Dan

D2 ¼ �
2aðcosh aþ D1 sinh aÞ � sinh a a2ðcþ 1Þ þ bf2 coth

ffiffi
n
p

am

� �ffiffiffiffiffiffi
Dan
p � bfaD1ffiffiffiffiffiffi

Dan
p

� �
2a cosh aþ bf sinh a=

ffiffiffiffiffiffiffiffiffi
Dan
p

D3 ¼ �ð1þ D2Þ coth a� D1

Substituting for W and Wm thus obtained in Eqs. (24) and (26)
respectively and solving we obtain H and Hm in the form

H ¼ A
4a2 ½K1 sinhðazÞ þ L1 coshðazÞ þ f ðzÞ� ð37Þ

Hm¼A
aK1�k4ffiffiffigp am

sinh
ffiffiffi
g
p

amzmð Þ� eT zm

2f
ffiffiffi
n
p

am
sinh

ffiffiffi
n

p
amzm

	 
� ��

þ eT L1

f
cosh

ffiffiffi
g
p

amzmð Þ�
eT coth

ffiffiffi
n
p

amzm
� �

2f
ffiffiffi
n
p

am
cosh

ffiffiffi
n

p
amzm

	 
� ��
ð38Þ

Here,

K1 ¼ ðk1 cosh aþ k2 sinh a� L1ða sinh aþ Bi cosh aÞÞ=ða cosh aþ Bi

� sinh aÞ
f ðzÞ ¼ ðD3 � 2aÞz� D2az2 �
sinhðazÞ

þ D3az2 þ ðD2 � 2aD1Þz
 �

coshðazÞ

with

k1 ¼
1

4a2 2a2þða2�1ÞD2 þ2D1aþ aD3
� �

þBi �D2þ2D1aþD3af g
 �

k2 ¼
1

4a2 2aþ 2a2D1 þ aD2 þ ða2 � 1ÞD3
� �

þ Bi 2aþ D2a� D3f g
 �
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k3 ¼
eT

2f
ffiffiffi
n
p

am

ffiffiffi
n

p
am � coth

ffiffiffi
n

p
am

	 

cosh

ffiffiffi
n

p
am

	 
	n
�ðam cothð

ffiffiffi
n

p
amÞ � 1Þ sinh

ffiffiffi
n

p
am

	 
o

k4 ¼
1

4a2 2aD1 � D2 � 2aD3f g

k5 ¼
eT

2f
ffiffiffi
n
p

am
� � coth

ffiffiffi
n

p
am

	 

cosh

ffiffiffi
n

p
am

	 

� sinh

ffiffiffi
n

p
am

	 
	 


The coupled boundary condition given by Eq. (28) is used ultimately
to obtain an expression for the Marangoni number in the form

M ¼ 4a ðaþ D2aþ 2D3Þ cosh aþ ð2D2 þ D1aþ D3aÞ sinh a½ �
K1 sinh aþ L1 cosh aþ f ð1Þ ð39Þ

The critical Marangoni number Mc is obtained numerically by min-
imizing M with respect to the wave number a for various values of
f, eT, Da, n, b, Bi and g and the results are exhibited graphically in
Figs. 2–5 and also in Tables 1–5.

4. Results and discussion

The onset of surface-tension-driven convection due to temper-
ature gradients in a system consisting of a fluid layer overlying a
fluid saturated anisotropic porous layer is studied. The eigenvalue
problem is solved exactly and an analytical expression for the
Marangoni number is obtained. When both boundaries are insulat-
ing to temperature perturbations (i.e., DH = 0 at z = 0, 1), the prob-
lem is also solved by regular perturbation technique with wave
number a as a perturbation parameter and an expression for the
critical Marangoni number is obtained in the form (for details
see [16])

Mc ¼
eT
f þ

g
f2

	 

C1 þ C2=2þ C3=3þ C4=4þ C5=2f2 ð40Þ
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Table 1
Comparison of critical Marangoni numbers for Beavers–Joseph (BJ) and Jones
conditions for Bi = 0.01, n = 0.1, Da = 0.003, b = 1, eT = 0.725.

f Mc (BJ)
g

Mc (Jones)
g

0.1 0.5 1.0 0.1 0.5 1.0

0.2 7.095 10.262 12.357 7.098 10.267 12.363
0.4 31.824 42.033 50.721 31.823 42.033 50.722
0.6 58.917 76.579 94.88 58.916 76.578 94.879
0.8 74.811 94.982 118.035 74.811 94.981 118.035
1.0 82.891 102.428 125.732 82.89 102.427 125.732

Table 2
Comparison of critical Marangoni numbers for Beavers–Joseph (BJ) and Jones
conditions for g = 0.5 = n, Da = 0.003, f = 1, eT = 0.725 and Bi = 0.1.

b 0.1 0.3 0.5 1 2 3

Mc (BJ) 340.408 397.03 421.533 447.211 463.633 469.808
Mc (Jones) 340.403 397.025 421.530 447.209 463.632 469.807

Table 3
Comparison of critical Marangoni number with those of Pearson [24] for a single fluid
layer case.

Bi 0 0.01 0.05 0.1

Mc (present study) 48.024 96.412 289.091 529.842
Mc (Pearson [24]) 48.02 96.346 289.07 529.82
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where

C1 ¼
ffiffiffiffiffiffiffiffiffi
Dan
p

eT=bf2 þ eT=2f

1þ f2=b
ffiffiffiffiffiffi
Da
p

þ fþ f3=3Dan
;

C2 ¼
f2 þ f

b
ffiffiffiffiffiffi
Da
p

 !
C1 �

ffiffiffiffiffiffiffiffiffi
Dan
p

eT

bf2 ; C3 ¼
f2C1

2Dan
� eT

2f
ð41Þ
C4 ¼ �
f3C1

6Dan
; C5 ¼ C6 ¼ C1feT ð42Þ

As mentioned earlier, at the interface of the fluid and anisotropic
porous layers both the Beavers–Joseph and the Jones conditions
are used to examine their influence on the criterion for the onset
of Marangoni convection. The results obtained by employing these
two boundary conditions for different values of f, g and b for fixed
values of other parameters are compared in Tables 1 and 2. From
the tables, it is seen that the critical Marangoni numbers almost re-
main the same for these two types of boundary conditions and thus
justifies the use of classical Beavers–Joseph slip condition in trick-
ling flow situations. The numerically evaluated critical stability
parameters for various values of physical parameters by utilizing
the Beavers–Joseph slip condition are presented graphically in Figs.
2–5 and also tabulated in Tables 3–5.

Fig. 2a shows the plot of critical Marangoni number Mc as a
function of depth ratio f for different values of Biot number Bi
when eT = 0.725, Da = 0.003, b = 1, g = 0.5 and n = 0.5. Small values
of f correspond to the single porous layer case, while large values
of f correspond to the single fluid layer case. From Fig. 2a, it is seen
that increasing Bi is to increase the critical Marangoni number and
hence its effect is to delay the onset of Marangoni convection. This
may be due to the fact that with increasing Bi, the thermal distur-
bances easily dissipate into the ambient surrounding due to a



Table 4
Critical Marangoni number for different values of anisotropic parameters and the
Darcy number when Bi = 0.01, b = 1, eT = 0.725, f = 1.0 for (a) g = 0.1 nd (b) n = 0.1.

n Mc

Da

0.001 0.003 0.005 0.007

a
0.1 97.589 91.609 86.887 82.866
0.2 95.886 88.488 82.897 78.283
0.4 93.564 84.407 77.840 72.618
0.6 91.877 81.582 74.450 68.914
0.8 90.522 79.393 71.886 66.160
1.0 89.377 77.600 69.822 63.973

g Mc

Da

0.001 0.003 0.005 0.007

b
0.1 97.589 95.609 86.887 82.866
0.2 103.465 96.466 90.946 86.273
0.4 115.043 101.210 98.649 92.640
0.6 126.396 105.845 105.847 98.475
0.8 137.529 114.805 112.586 103.841
1.0 148.451 123.373 118.910 108.794
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better convective heat transfer coefficient at the top free surface
and hence makes the system more stable. Moreover, for a fixed va-
lue of Bi, Mc increases initially with f, reaches a maximum and ulti-
mately attains an asymptotic value with further increase in f. The
critical Marangoni numbers obtained by regular perturbation tech-
nique when Bi = 0 (i.e., when both boundaries are insulated to tem-
perature perturbations) are also shown in Fig. 2a by marking
(� � �) and it is observed that the results are in very good agree-
ment with those obtained exactly. This suggests the applicability of
regular perturbation technique in solving similar type of convec-
tion problems for which exact solution is not possible. From the
figure we also note that, depending on the value of Bi, Mc ap-
proaches to an asymptotic value at higher values of f (i.e., single
fluid layer case). The asymptotic values computed for different val-
ues of Bi are compared with those obtained from the expression
given by Pearson [24] for a single fluid layer case and good agree-
ment is found (see Table 3). Whereas, the curves of Mc for different
Bi come together as f ? 0. The variation of critical wave number ac

as a function f is shown in Fig. 2b for the values presented in
Fig. 2a. The figure indicates that increasing Bi is to increase the
Table 5
Critical Marangoni number for different values of depth ratio, Darcy number and Biot num

f Mc (Bi = 0)
Da

0.001 0.003 0.005 0.007

0.1 5.178 3.198 2.631 2.324
0.5 68.934 42.717 31.999 26.042
1.0 72.414 64.118 58.314 53.799
1.5 66.136 62.651 60.069 57.917
2.0 62.091 60.058 58.567 57.317
2.5 59.465 58.055 57.038 56.190

Mc (Bi = 0.05)
Da

0.001 0.003 0.005 0.007

0.1 9.133 5.640 4.641 4.100
0.5 216.545 134.190 100.519 81.808
1.0 288.745 255.664 232.521 214.517
1.5 294.273 278.767 267.279 257.702
2.0 294.336 284.695 277.629 271.704
2.5 293.768 286.803 281.778 277.586
critical wave number (i.e., to decrease the size of convection cells)
but remains almost invariant at smaller as well as at higher values
of f. The critical wave number is found to be negligibly small when
Bi = 0 and for other values of Bi it takes the peak value around f = 1
(i.e., porous and fluid layers are of same depth).

The influence of permeability of the porous layer on the onset of
Marangoni convection is exhibited in Fig. 3a when eT = 0.725,
b = 1, g = 0.5 and n = 0.5 for two values of Bi (=0 and 0.01). It is seen
that decrease in Da is to increase the critical Marangoni number
and hence its effect is to delay the onset of Marangoni convection.
For small values of f (i.e. a very thin fluid layer above the porous
layer), Mc takes small values as it is directly proportional to the
fluid layer thickness d. At higher values of f, however, the curves
of Mc for different Da coalesce. Also, the curves of Bi = 0 lie below
those of Bi = 0.01 indicating the insulating boundaries have less
stabilizing effect on the system. Fig. 3b represents the variation
of ac for the values considered in Fig. 3b. Although increasing Da
is to decrease the critical wave number, a reverse trend could be
seen at smaller values of f. At higher values of f, however, the
curves of ac join together for different Da and ac remains indepen-
dent of f.

The effect of mechanical and thermal anisotropy parameters on
the onset of Marangoni convection is emphasized by depicting the
variation of Mc and ac over a range of mechanical anisotropy
parameter n for different values of thermal anisotropy parameter
g in Figs. 4a and 4b, respectively for a fixed value of Da = 0.003,
f = 1, b = 1 and eT = 0.725 with Bi = 0 and 0.01. Besides, the critical
Marangoni numbers computed for different values of n, g and Da
for fixed values of b = 1, Bi = 0.01, eT = 0.725 and f = 1.0 are also tab-
ulated in Table 4. As seen from the figures, both Mc and ac increase
with the decrease in the value of n. This is because, decrease in n
corresponds to smaller horizontal permeability which in turn hin-
ders the motion of the fluid in the horizontal direction. As a conse-
quence, the conduction process in the porous medium becomes
more stable and hence higher values of Mc are needed for the onset
of convection. The larger resistance to horizontal flow also leads to
a shortening of the horizontal wavelength (i.e., increase in the hor-
izontal wave number) at the onset of convection. The results pre-
sented in Fig. 4b corroborate this fact. In the same figures, it is
also seen that for a fixed value of n, Mc decreases with decreasing
g. This may be attributed to the fact that, as g decreases the hori-
zontal thermal diffusivity also decreases. Thus heat cannot be
transported through the porous layer and hence the horizontal
temperature variations in the fluid required to sustain convection
ber when b = 1, eT = 0.725, n = 0.5 = g.

Mc (Bi = 0.01)
Da

0.001 0.003 0.005 0.007

5.969 3.686 3.033 2.679
98.456 61.012 45.703 37.195

115.681 102.428 93.155 85.943
111.763 105.874 101.511 97.874
108.540 104.985 102.379 100.194
106.326 103.805 101.986 100.469

Mc (Bi = 0.1)
Da

0.001 0.003 0.005 0.007

13.087 8.082 6.650 5.875
364.157 225.663 169.039 137.573
505.075 447.211 406.728 375.236
522.410 494.884 474.489 457.487
526.580 509.332 496.690 486.090
528.071 515.551 506.518 498.982
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are less efficiently dissipated for small g. Hence, the base state be-
comes less stable leading to lower values of Mc and also the onset
of Marangoni convection occurs at a higher wave number. The re-
sults presented for different values of Da in Table 4 also confirm
the above observations. Table 5 contains the values of Mc for differ-
ent values of f, Da and Bi when b = 1, eT = 0.725, n = 0.5 = g. It is
noted that, depending on the values of Bi and Da, there is a thresh-
old value of f P 1 that produces maximum stability to the system.
In fact, this threshold value increases with increasing Bi and Da.

Fig. 5 depicts the variation of Mc as a function of slip parameter
b for two values of f (=0.5 and 1) and Bi (=0 and 0.01) with
g = 0.5 = n, eT = 0.725 and Da = 0.003. It is observed that increase
in the slip parameter is to increase the critical Marangoni number
initially but remains almost invariant at higher values of the same.
Moreover, the effect of slip parameter on the onset of Marangoni
convection is found to be more pronounced with an increase in
the value of f.
5. Conclusions

The criterion for the onset of Marangoni convection in an aniso-
tropic porous layer underlain by a fluid layer is investigated theo-
retically to understand control of Marangoni convection. The Darcy
equation is used in the porous medium and both Beavers–Joseph
and Jones conditions are used at the interface between the porous
and fluid layers. The top of the fluid layer is free at which surface
tension variations due to temperature are allowed for and a gen-
eral thermal boundary condition is invoked. The bottom of the por-
ous layer is rigid and considered to be insulating to temperature
perturbations. The resulting eigenvalue problem is solved exactly
and also by a regular perturbation technique when the top and bot-
tom boundaries are insulating to temperature perturbations and it
is found that the results complement with each other. The critical
Marangoni and the corresponding wave numbers are determined
over a wide range of values of the depth ratio f, and degrees of
anisotropy of the permeability n and thermal diffusivity g, Biot
number Bi, Darcy number Da and the slip parameter b. It is found
that there is no preference between the Beavers–Joseph and Jones
conditions since the critical stability parameters obtained from
these two conditions are almost the same. It is observed that the
mechanical and thermal anisotropy parameters influence the sta-
bility of the system considerably and there is a threshold value
of f P 1 that produces maximum stability to the system. Both Mc

and ac increase with decreasing n and increasing g but ac becomes
vanishingly small when Bi = 0. Increasing Bi and decreasing Da is to
delay the onset of Marangoni convection and also to increase the
critical wave number. The effect of increasing slip parameter is
to delay the onset of Marangoni convection and its effect is found
to be significant for depth ratios f P 0.5. From the scenario envis-
aged, it is evident that it is possible to control Marangoni convec-
tion effectively in a composite fluid and anisotropic porous layers
system by tuning the values of physical parameters involved there-
in namely, f, b, Da, n, Bi and g.
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