27 research outputs found

    Morphological and physiological indicators of tolerance to atmospheric stress in two sensitive and two tolerant tea clones in South Africa

    No full text
    Tea (Camellia sinensis) clones (PC113 and SFS204) sensitive to very dry air and clones (PC114 and SFS150) that are, tolerant, were studied at two tea estates (Tshivhase and Grenshoek) in the Northern Province of the Republic of South Africa. Among the morphological leaf traits studied, stomatal density, pore diameter and pore depth were not linked consistently to stress tolerance. Cuticle thickness was not a good indicator of stress tolerance because genetic differences between clones were confounded by the clonal response of wax production to stress. In contrast, measured leaf conductance to water vapour transport was larger and leaf water potential was lower in sensitive clones, but only with more severe atmospheric stress (Grenshock). Also the ratio of the calculated maximum stomatal conductance in old and young leaves was higher in sensitive clones, suggesting that the loss of a larger fraction of the total stem flow by old leaves enhanced the stress experienced by the young leaves. However, this indicator was valid only under the more stressful microclimate of Grenshoek. The results indicate that even promising criteria for stress tolerance should be tested by exposure to stress during selection

    Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)

    Get PDF
    One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size

    Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment.

    No full text
    The International Alliance for NanoEHS Harmonization (IANH) organises interlaboratory comparisons of methods used to study the potential biological impacts of nanomaterials. The aim of IANH is to identify and reduce or remove sources of variability and irreproducibility in existing protocols. Here, we present results of the first IANH round robin studies into methods to assess the size and surface charge of suspended nanoparticles. The test materials used (suspensions of gold, silica, polystyrene, and ceria nanoparticles, with [primary] particles sizes between 10 nm and 80 nm) were first analysed in repeatability conditions to assess the possible contribution of between-sample heterogeneity to the between-laboratory variability. Reproducibility of the selected methods was investigated in an interlaboratory comparison between ten different laboratories in the USA and Europe. Robust statistical analysis was used to evaluate within- and between-laboratory variability. It is shown that, if detailed shipping, measurement, and reporting protocols are followed, measurement of the hydrodynamic particle diameter of nanoparticles in predispersed monomodal suspensions using the dynamic light scattering method is reproducible. On the other hand, measurements of more polydisperse suspensions of nanoparticle aggregates or agglomerates were not reproducible between laboratories. Ultrasonication, which is commonly used to prepare dispersions before cell exposures, was observed to further increase variability. The variability of the zeta potential values, which were also measured, indicates the need to define better surface charge test protocols and to identify sources of variability

    Introductory Guide to Nanometrology

    No full text
    This Guide introduces the reader to the science of measurements at the nanoscale, that is nanometrology. It is aimed at researchers in the nanotechnology area, for whom the metrology aspect is new, and at metrologists, interested in knowing about the specifics of metrology at the nanoscale. The Guide does not give an exhaustive review of the field. Rather it is intended to increase the general awareness of nanometrology, and its basic challenges. In a first section, three main questions are addressed: 1. What is (nano)metrology? 2. Why is nanometrology important? 3. What are the main challenges for nanometrology? The Guide continues with a section on the meaning of a number of generic metrology concepts. In the third section, the Guide illustrates some of the identified nanometrological challenges with practical examples and case studies from three different application areas (thin films, surface structures and nanoparticles). A final subsection is devoted to the emerging issue of metrology for nanobiotechnologyJRC.DG.D.2-Reference material
    corecore