427 research outputs found
Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen
Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reefbuilding corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. IMPORTANCE The methodology applied, combining transmission electron microscopy with nanoscale secondary-ion mass spectrometry (NanoSIMS) imaging of coral tissue labeled with stable isotope tracers, allows quantification and submicrometric localization of metabolic fluxes in an intact symbiosis. This study opens the way for investigations of physiological adaptations of symbiotic systems to nutrient availability and for increasing knowledge of global nitrogen and carbon biogeochemical cycling. © 2013 Kopp et al
On the Divergence of Perturbation Theory. Steps Towards a Convergent Series
The mechanism underlying the divergence of perturbation theory is exposed.
This is done through a detailed study of the violation of the hypothesis of the
Dominated Convergence Theorem of Lebesgue using familiar techniques of Quantum
Field Theory. That theorem governs the validity (or lack of it) of the formal
manipulations done to generate the perturbative series in the functional
integral formalism. The aspects of the perturbative series that need to be
modified to obtain a convergent series are presented. Useful tools for a
practical implementation of these modifications are developed. Some resummation
methods are analyzed in the light of the above mentioned mechanism.Comment: 42 pages, Latex, 4 figure
The Effect of Weak Interactions on the Ultra-Relativistic Bose-Einstein Condensation Temperature
We calculate the ultra-relativistic Bose-Einstein condensation temperature of
a complex scalar field with weak lambda Phi^4 interaction. We show that at high
temperature and finite density we can use dimensional reduction to produce an
effective three-dimensional theory which then requires non-perturbative
analysis. For simplicity and ease of implementation we illustrate this process
with the linear delta expansion.Comment: Latex2e, 12 pages, three eps figures, replacement with additional
discussion and extra figur
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Quantum teleportation on a photonic chip
Quantum teleportation is a fundamental concept in quantum physics which now
finds important applications at the heart of quantum technology including
quantum relays, quantum repeaters and linear optics quantum computing (LOQC).
Photonic implementations have largely focussed on achieving long distance
teleportation due to its suitability for decoherence-free communication.
Teleportation also plays a vital role in the scalability of photonic quantum
computing, for which large linear optical networks will likely require an
integrated architecture. Here we report the first demonstration of quantum
teleportation in which all key parts - entanglement preparation, Bell-state
analysis and quantum state tomography - are performed on a reconfigurable
integrated photonic chip. We also show that a novel element-wise
characterisation method is critical to mitigate component errors, a key
technique which will become increasingly important as integrated circuits reach
higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted
manuscript; Nature Photonics (2014
Social presence and dishonesty in retail
Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/
Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Non-linear Model-free Analysis
In this work, nonlinear model-free methods for bivariate time series analysis have been applied to study cardiorespiratory interactions. Specifically, entropy-based (i.e. Transfer Entropy and Cross Entropy) and Convergent Cross Mapping asymmetric coupling measures have been computed on heart rate and breathing time series extracted from electrocardiographic (ECG) and respiratory signals acquired on 19 young healthy subjects during an experimental protocol including spontaneous and controlled breathing conditions. Results evidence a bidirectional nature of cardiorespiratory interactions, and highlight clear similarities and differences among the three considered measures
Harnessing microalgae for finfish nutrition: advances in biotechnology and aquafeed development
Finfish aquaculture is a key contributor to global seafood production, providing quality protein to consumers across the world, however, the search for regenerative, cost-effective and scalable raw materials continues. Alternatives to wild-caught fish have been explored extensively with limited success. Among the most promising alternatives is autotrophic marine microalgae as they produce essential fatty acids, amino acids and bioactive compounds that support fish growth and immune function. However, their development into aquafeed is limited due to cost. By considering the major benefits of microalgae in aquafeed, as well as biotechnological advancements in the industry, this review aims to consolidate multi-disciplinary findings and highlight research opportunities to facilitate widespread adoption of microalgae into aquafeed
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
- …
