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Abstract— In this work, nonlinear model-free methods for 

bivariate time series analysis have been applied to study 

cardiorespiratory interactions. Specifically, entropy-based (i.e. 

Transfer Entropy and Cross Entropy) and Convergent Cross 

Mapping asymmetric coupling measures have been computed 

on heart rate and breathing time series extracted from 

electrocardiographic (ECG) and respiratory signals acquired 

on 19 young healthy subjects during an experimental protocol 

including spontaneous and controlled breathing conditions. 

Results evidence a bidirectional nature of cardiorespiratory 

interactions, and highlight clear similarities and differences 

among the three considered measures. 

I. INTRODUCTION 

Although the interactions between cardiovascular and 
respiratory systems in humans have been long studied [1], 
[2], the underlying mechanisms that drive these interactions 
are still debated. The modulation of the heart rate caused by 
respiration, i.e. the so-called respiratory sinus arrhythmia 
(RSA), is the most prominent of such interactions. It causes 
the heart rate to decrease during inspiration and to increase 
during inspiration, and accounts for 20-60% of short-term 
heart rate variability at rest [2]. Other forms of cardio-
respiratory interaction include the synchronization between 
the heart beat and the onset of inspiration and the constant 
phase difference between the right and the left stroke 
volumes over a respiratory cycle [2]. Different approaches 
have been employed in the literature to assess 
synchronization, coordination and coupling between cardiac 
and respiratory signals in various physio-pathological 
conditions, also including causality measures and asymmetric 
coupling measures [2]–[6], which led to observe that the 
coupling between the cardiovascular and respiratory system 
is not always unidirectional from respiration to heart rate. 

Given that the dynamics of cardiorespiratory system is 

often regarded as nonlinear [6], in this work we apply three 

different nonlinear measures of causality (i.e. Transfer 

Entropy (TE)) or asymmetric coupling (i.e, Cross-Entropy 

(CE) and Convergent Cross Mapping (CCM)), to assess the 

closed-loop interactions between respiration and heart period 

during spontaneous and controlled breathing. 
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II. MATERIALS AND METHODS 

The analyzed data consisted of electrocardiographic 
(ECG) and respiratory flow signals acquired on 19 healthy 
subjects (8 males; age: 27-35 years) with a sampling rate of 
300 Hz. Signals were recorded on subjects lying in a resting 
supine position; after a first phase of spontaneous respiration 
(SR), they were asked to perform controlled breathing at 10 
(R10), 15 (R15) and 20 (R20) breaths/minute in a random 
order. R-R interval (RRI) time series were extracted as time 
intervals between two consecutive ECG R peaks, while 
breathing (RESP) time series were defined by sampling the 
respiratory flow signal at ECG R peaks. For each subject and 
phase, a stationary artifact-free time window of N=255 
heartbeats was selected and then normalized to zero mean 
and unit variance. Further details on ethical approval, data 
acquisition and pre-processing can be found in [3], [4].  

Three non-linear model-free measures (CCM, TE and 
CE) were applied to the RRI and RESP time series to 

investigate on the directionality and strength of 

cardiorespiratory interactions. CCM is a method based on 

nonlinear state space reconstruction that identifies causality 

in  complex dynamical systems [7]. Given two time series X 

and Y of length N, the algorithm first generates the manifolds 

𝑀𝑥 and 𝑀𝑦 as time-lagged embedding vectors 𝑋𝑛,𝜏
𝑚 =

[𝑋𝑛 , 𝑋𝑛−𝜏 , …𝑋𝑛−(𝑚−1)𝜏] and 𝑌𝑛,𝜏
𝑚 = [𝑌𝑛 , 𝑌𝑛−𝜏 , …𝑌𝑛−(𝑚−1)𝜏] 

for each point 𝑛, with 𝑚 the embedding dimension and 𝜏 the 

embedding lag. In order to determine how 𝑿 influences Y, the 

𝑚+ 1 nearest neighbors of 𝑌𝑛,𝜏
𝑚  (i.e. 𝑌𝑛𝑖,𝜏

𝑚 , i=1,…,𝑚+ 1) are 

found, then 𝑋̂𝑛 is estimated from the determined manifold 𝑀𝑦 

using a locally weighted sum: 𝑋̂𝑛|𝑀𝑦 = ∑ 𝑤𝑖𝑋𝑛𝑖
𝐸+1
𝑖=1 , where 

𝑤𝑖 =
𝑒𝑑𝑖/𝑑1

∑ 𝑒
𝑑𝑗/𝑑1𝑚+1

𝑗=1

 is a weight based on the Euclidean distance 

𝑑𝑖 between 𝑌𝑛,𝜏
−  and 𝑌𝑛𝑖,𝜏

− . The estimated values 𝑋̂𝑛 are then 

compared to the original observed sequence 𝑋𝑛 computing 

the Pearson correlation coefficient 𝜌(𝑋𝑛 , 𝑋̂𝑛|𝑀𝑦). The same 

steps are applied to determine how 𝒀 influences X, thus 

computing 𝜌(𝑌𝑛 , 𝑌̂𝑛|𝑀𝑥).  

The TE is an information-theoretic measure which 
implements in a model-free fashion the Granger causality 
concept of predictability improvement. With the notation 
above, and measuring unpredictability by the conditional 
entropy 𝐻(∙ | ∙), the TE from X to Y is defined as [8]: 

𝑇𝐸𝑋→𝑌 = 𝐻(𝑌𝑛+1|𝑌𝑛,𝜏
𝑚−1) − 𝐻(𝑌𝑛+1|𝑋𝑛,𝜏

𝑚−1, 𝑌𝑛,𝜏
𝑚−1)   (1) 

On the other hand, the CE is an information-theoretic 
asymmetric coupling measure that quantifies the concept of 
cross-predictability measuring the information shared 
between the current state of Y and the synchronous 
embedding vector of X [8]: 
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𝐶𝐸𝑋→𝑌 = 𝐻(𝑌𝑛) − 𝐻(𝑌𝑛|𝑋𝑛,𝜏
𝑚 )      (2) 

To make CE and CCM conceptually similar, differently from 

the existing definition of CE [8], in (2) we consider also the 

influence of the current state of the driver process 𝑋𝑛 on the 

current state of the target one 𝑌𝑛. 

In this study, for each subject and condition, the TE, CE 
and CCM measures were computed on the RRI and RESP 
time series for both directions, i.e. considering RRI as the 
target and RESP as the driver and vice versa, to assess the 
bidirectional coupling between the respiratory and cardiac 
dynamics. To compute TE and CE measures, the k-nearest 
neighbor (kNN) [9] estimator was employed, setting the 
number of neighbors as k=10. All measures were computed 
using an embedding dimension 𝑚 = 3 and an embedding 
delay 𝜏 = 1, as is common in short-term cardiovascular 
variability analysis [8], [9]. 

The statistical significance of the differences between 
conditions of a given measure computed across subjects was 
performed through the non-parametric Kruskal-Wallis 
analysis of variance (p<0.05) followed by post-hoc Wilcoxon 
signed rank test with Bonferroni correction for multiple 
comparisons (n=6). Moreover, the statistical significance of 
estimated measures for each subject was tested generating 
100 surrogate time series through the circular shift method 
with minimum shift set to 20; the significance threshold was 
set to 95% for a one-sided test.  

III. RESULTS 

The results reported in Fig. 1 indicate that all measures 

detect statistically significant coupling between RRI and 

RESP, along both directions, in the majority of subjects. The 

coupling values are comparable for the two directions. The 

TE does not evidence any statistically significant difference 

across breathing phases (Fig. 1a). On the contrary, both CE 

(Fig. 1b) and CCM (Fig. 1c) show a higher degree of 

cardiorespiratory coupling at the slowest respiratory rate 

(R10) than in the other phases; CE and CCM are also higher 

from RESP to RRI during R15 when compared to R20. 

IV. DISCUSSION AND CONCLUSION 

The statistically significant values observed for the TE, 

CE and CCM measures, as well as the similar trends across 

experimental conditions obtained computing each measure in 

the two directions from RESP to RRI and from RRI to RESP, 

support the bidirectional symmetric nature of cardio-

respiratory interactions and thus the hypothesis that cardiac 

activity also influences the respiratory rate. 

The increase of CE and CCM during low frequency 

breathing can be ascribed to the heavier modulation of heart 

rate at the imposed respiratory frequency due to RSA. On the 

other hand, the inability of the TE to reveal variations across 

the breathing conditions may be due to the strong 
cardiorespiratory coupling in all conditions, which brings 

self-predictability to the target dynamics. 

The different trends exhibited by CE and TE across 

conditions confirm their different nature, the former being an 

asymmetric measure of coupling and the latter a Granger 

causality measure. On the other hand, the similar behavior of 
CE and CCM suggests that the measures capture similar 

aspects of coupled dynamics. Future studies should 

investigate comparatively the ability of these measures to 

identify a prevailing coupling direction, also considering 

simulated systems, and should test potential causality links 

between RRI and RESP individually for each subject, given 
that the results may be affected by the different ability of the 

subjects to follow correctly the breathing protocol. 

 
Fig. 1. Boxplot distributions (95% c.i. and 1 sd) and individual values of 

(a) TE, (b) CE (b) and (c) CCM correlation coefficient computed in the four 

breathing phases (SR, R10, R15, R20) from RESP to RRI (left) and from 

RRI to RESP (right). #, p<0.05, Kruskal-Wallis test; phase name, p<0.05 

post-hoc Wilcoxon signed rank test with Bonferroni correction. Bottom: 

number of subjects (out of 19) with statistically significant coupling. 
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