64 research outputs found

    Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

    Get PDF
    OBJECTIVE: Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS: SIRT1-SIRT7 gene and protein expression was determined in PBMCs of 54 subjects (41 with normal glucose tolerance and 13 with metabolic syndrome). Insulin sensitivity was assessed by the minimal model analysis. Subclinical atherosclerosis was assessed by carotid intima-media thickness (IMT). In THP-1 cells exposed to high glucose or fatty acids in vitro, we explored SIRT1 expression, p53 acetylation, Jun NH(2)-terminal kinase (JNK) activation, NAD(+) levels, and nicotinamide phosphoribosyltransferase (NAMPT) expression. The effects of SIRT1 induction by resveratrol and of SIRT1 gene silencing were also assessed. RESULTS: In vivo, insulin resistance and metabolic syndrome were associated with low PBMC SIRT1 gene and protein expression. SIRT1 gene expression was negatively correlated with carotid IMT. In THP-1 cells, high glucose and palmitate reduced SIRT1 and NAMPT expression and reduced the levels of intracellular NAD(+) through oxidative stress. No effect was observed in cells exposed to linoleate or insulin. High glucose and palmitate increased p53 acetylation and JNK phosphorylation; these effects were abolished in siRNA SIRT1-treated cells. Glucose- and palmitate-mediated effects on NAMPT and SIRT1 were prevented by resveratrol in vitro. CONCLUSIONS: Insulin resistance and subclinical atherosclerosis are associated with SIRT1 downregulation in monocytes. Glucotoxicity and lypotoxicity play a relevant role in quenching SIRT1 expression

    Peritoneal changes due to laparoscopic surgery

    Get PDF
    Item does not contain fulltextBACKGROUND: Laparoscopic surgery has been incorporated into common surgical practice. The peritoneum is an organ with various biologic functions that may be affected in different ways by laparoscopic and open techniques. Clinically, these alterations may be important in issues such as peritoneal metastasis and adhesion formation. METHODS: A literature search using the Pubmed and Cochrane databases identified articles focusing on the key issues of laparoscopy, peritoneum, inflammation, morphology, immunology, and fibrinolysis. Results : Laparoscopic surgery induces alterations in the peritoneal integrity and causes local acidosis, probably due to peritoneal hypoxia. The local immune system and inflammation are modulated by a pneumoperitoneum. Additionally, the peritoneal plasmin system is inhibited, leading to peritoneal hypofibrinolysis. CONCLUSION: Similar to open surgery, laparoscopic surgery affects both the integrity and biology of the peritoneum. These observations may have implications for various clinical conditions.1 januari 201

    Green tea attenuates angiotensin II-induced cardiac hypertrophy in rats by modulating reactive oxygen species production and the Src/epidermal growth factor receptor/Akt signaling pathway

    No full text
    We previously documented a clear-cut antihypertensive effect of green teat extract (GTE), which was associated with correction of endothelial dysfunction and prevention of left ventricular hypertrophy in an angiotensin II (Ang II)-dependent model of hypertension, but the molecular mechanisms remain to be defined. As several effects of Ang II involve production of reactive oxygen species (ROS) and activation of 2nd messengers, such as mitogen-activated protein kinase (MAPK) and Akt, we investigated the effect of GTE on these signal transduction pathways in Ang II-treated rats. Rats were treated for 2 wk with Ang II infusion (700 mug.kg(-1).d(-1); n = 6, via osmotic minipumps), Ang II plus GTE (6 g/L) dissolved in the drinking water; n = 6), or vehicle (n = 6) to serve as controls. Blood pressure was monitored by telemetry throughout the study. The activation and expression of NAD(P)H oxidase subunits, protein kinase C isoforms, Src, epidermal growth factor receptor (EGFR), Akt, and MAPK were determined in the heart in vitro through immunoprecipitation and western blot analysis with specific antibodies. NAD(P)H oxidase enzymatic activity was measured by cytochrome c reduction assay. GTE blunted Ang II-induced blood pressure increase and cardiac hypertrophy. In Ang II-treated rats, GTE decreased the expression of the NAD(P)H oxidase subunit gp91(phox) and the translocation of Rac-1, as well as NAD(P)H oxidase enzymatic activity. Furthermore, it specifically reduced Ang II-induced Src, EGFR, and Akt phosphorylation. These results show that GTE blunts Ang II-induced cardiac hypertrophy specifically by regulating ROS production and the Src/EGFR/Akt signaling pathway activated by Ang II
    corecore