54 research outputs found
Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations
The act of measurement bridges the quantum and classical worlds by projecting
a superposition of possible states into a single, albeit probabilistic,
outcome. The time-scale of this "instantaneous" process can be stretched using
weak measurements so that it takes the form of a gradual random walk towards a
final state. Remarkably, the interim measurement record is sufficient to
continuously track and steer the quantum state using feedback. We monitor the
dynamics of a resonantly driven quantum two-level system -- a superconducting
quantum bit --using a near-noiseless parametric amplifier. The high-fidelity
measurement output is used to actively stabilize the phase of Rabi
oscillations, enabling them to persist indefinitely. This new functionality
shows promise for fighting decoherence and defines a path for continuous
quantum error correction.Comment: Manuscript: 5 Pages and 3 figures ; Supplementary Information: 9
pages and 3 figure
Parameterisation of the residual temperature distribution based on the modelling of successive emission of prompt neutrons
A new deterministic modelling taking into account the successive emission of prompt neutrons from initial fragments of a fragmentation range {A, Z, TKE} constructed as in the Point-by-Point (PbP) treatment is described. The good agreement of different prompt emission quantities obtained from this modelling (e.g. v(A), v(TKE), E-γ(A), E-γ(TKE), etc.) with the experimental data and the results of the PbP model and other Monte-Carlo models validates the present modelling of sequential emission. The distributions of different residual quantities, including the residual temperature distributions P(T) of light and heavy fragments allow to obtain a new parameterisation of P(T) which can be used in the PbP model and the Los Alamos model
Nonideal quantum detectors in Bayesian formalism
The Bayesian formalism for a continuous measurement of solid-state qubits is
derived for a model which takes into account several factors of the detector
nonideality. In particular, we consider additional classical output and
backaction noises (with finite correlation), together with quantum-limited
output and backaction noises, and take into account possible asymmetry of the
detector coupling. The formalism is first derived for a single qubit and then
generalized to the measurement of entangled qubits.Comment: 10 page
Investigation of 14.1 MeV neutrons interaction with C, Mg, Cr
This paper is dedicated to n+12C, n+24Mg, n+52Cr -reactions investigation at 14.1 MeV neutron energy. Characteristics of these reactions have been calculated using TALYS code to estimate perspectives of using of this code in data interpretation in the TANGRA project. This project is performed in Frank Laboratory of Neutron Physics (FLNP JINR) to investigate properties of (n,xγ)-type reactions, important for fundamental and practical applications
Investigation of 14.1 MeV neutrons interaction with C, Mg, Cr
358-362This paper is dedicated to n+12C, n+24Mg, n+52Cr -reactions investigation at 14.1 MeV neutron energy. Characteristics of these reactions have been calculated using TALYS code to estimate perspectives of using of this code in data interpretation in the TANGRA project. This project is performed in Frank Laboratory of Neutron Physics (FLNP JINR) to investigate properties of (n,xγ)-type reactions, important for fundamental and practical applications
Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy
Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability
Reverse quantum state engineering using electronic feedback loops
We propose an all-electronic technique to manipulate and control interacting
quantum systems by unitary single-jump feedback conditioned on the outcome of a
capacitively coupled electrometer and in particular a single-electron
transistor. We provide a general scheme to stabilize pure states in the quantum
system and employ an effective Hamiltonian method for the quantum master
equation to elaborate on the nature of stabilizable states and the conditions
under which state purification can be achieved. The state engineering within
the quantum feedback scheme is shown to be linked with the solution of an
inverse eigenvalue problem. Two applications of the feedback scheme are
presented in detail: (i) stabilization of delocalized pure states in a single
charge qubit and (ii) entanglement stabilization in two coupled charge qubits.
In the latter example we demonstrate the stabilization of a maximally entangled
Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013
Response function of a BGO detector for γ-rays with energies in the range from 0.2 MeV to 8 MeV
427-430This work is devoted to determination of the response function of a BGO detector of γ-rays, which is used in experiments aimed at investigation of inelastic scattering of neutrons with energies of 14.1 MeV on various nuclei. A function is constructed to describe the Monte-Carlo simulated response of a gamma-detector, which allows taking into account all possible mechanisms of interaction of γ-rays with matter, as well as the geometric parameters of the detector. For all components of the function, an analytical form of their energy dependencies is selected and its parameters are determined in the case of registration of γ-quanta with energies in the range from 0.2 MeV to 8 MeV
- …