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Abstract. The fission-fragment mass and total kinetic energy (TKE) distributions are
evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck
degree of freedom as the relevant collective parameters in the Fourier shape parametriza-
tion recently developed by us. The potential energy surfaces (PES) are calculated within
the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the
Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are
presented and analysed in detail for even-even Plutonium isotopes with A = 236–246.
They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions
are obtained from the ground state of a collective Hamiltonian computed within the Born-
Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fis-
sion probability. The calculated mass and total kinetic energy distributions are found in
good agreement with the data.

1 Introduction

Our present understanding of nuclear fission is still based on the idea of Lisa Meitner and Otto Frisch
[1] of a deformed charged liquid drop. In a seminal paper [2] Niels Bohr and John A. Wheeler fully de-
veloped the concept of the energy surface of a nucleus as function of a set of deformation parameters.
The height of the minimal energy barrier that the nucleus has to overcome in the multidimensional
energy hyper-surface as function of the deformation parameters on its decay path determines the sta-
bility of the nucleus against fission. Unfortunately, following the Bohr-Wheeler paper, one sometimes
still uses up to now the Lord Rayleigh expansion of the nuclear surface into spherical harmonics. It
was shown (e.g. in Ref. [3]) that such an expansion is not rapidly converging for large deformations
and one needs to include terms up to multipolarity 16 in order to describe shapes close to the scission
point. Fortunately, some better parametrizations of nuclear shapes exist. Among the most popu-
lar are the Quadratic Surfaces of Revolution (QSR) originally proposed by Nix [4], the Funny-Hills
parametrization and its extension [5, 6], and the Cassini ovals with modifications due to Pashkevich
[7]. The first two of the above quoted parametrizations are not analytical and closed (e.g. do no allow
for the inclusion of higher order terms) while the last one is not easy to handle and its parameters do
not have a clear physical interpretation.

The recently developed Fourier parametrization (see Appendix) of deformed nuclear shapes [8, 9]
is free of these ambiguities and is rapidly converging. Using this parametrisation we have made an
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attempt to obtain the fission-fragment mass and total kinetic energy distribution of even-even Pluto-
nium isotopes with mass numbers 236 ≤ A ≤ 246. The deformation-energy landscapes that we are
going to discuss in Sect. 4 are described by three Fourier deformation parameters q2, q3, q4 which
are respectively elongation, mass-asymmetry and neck degree of freedom of the fissioning nucleus
[8, 9]. Nonaxial shapes were not included in the present research since at large nuclear deformations
they turn out to play a minor role. Thanks the fast convergence of the Fourier series, we believe that
the above defined three deformation parameters are sufficient to describe the large variety of nuclear
shapes up to very large deformations [9].The potential energy surfaces of different fissioning nuclei
were calculated within the macroscopic-microscopic method [5, 10]. The fragment mass distribution
obtained in low-energy fission of light actinides was evaluated in a quantum mechanics framework
within the Born-Oppenheimer approximation (BOA) [11].

Within the aforementioned deformation space the fission yield is obtained from the probability
distribution of the collective wave function on the (q3, q4) plane in the vicinity of the scission config-
uration (q2 ≈ 2.3). A neck-size dependent fission probability [12] was used to evaluate the fission-
fragment mass and kinetic energy yields from the distribution probability at different elongations of
the fissioning nucleus as will be explained in Sect. 3.

2 Macroscopic-microscopic model of the potential energy

The nuclear deformation energies of our analysis were determined in the macroscopic-microscopic
approach, where the Lublin Strasbourg Drop (LSD) model [13] has been used for the macroscopic
part of the potential-energy surface. Microscopic effects have been evaluated through a Yukawa-
folded (YF) single-particle potential [14] with the parameters listed in Ref. [15], where also our way
of solving of the eigenproblem of the YF Hamiltonian is described. Eighteen deformed harmonic
oscillator shells were taken into account when diagonalising the YF Hamiltonian. The Strutinsky
shell-correction method [5, 16] with a 8th order correctional polynomial and a smearing width γS =

1.2 �ω0 is used, where �ω0 = 41/A1/3 MeV is the spherical harmonic-oscillator frequency. The
BCS [10] theory, including an approximate GCM+GOA particle-number projection as described in
Refs. [17] was used for the pairing correlations. The pairing strength equal to G · N2/3 = 0.28 �ω0,
(with N = Z,N for protons or neutrons) was adjusted to the experimental mass differences of nuclei
in this region using a pairing window composed of 2

√
15N single-particle levels closest to the Fermi

surface [18].

3 Collective model of fission

In any coordinates qn the collective Hamiltonian has the following form:

Ĥcoll = −
�2

2

∑
i, j

|M|−1/2 ∂

∂qi
|M|−1/2M−1

i j
∂

∂q j
+ V , (1)

where Mi j({qi}) and V({qi}) denote the inertia tensor and the potential energy, respectively and |M| =
det(Mi j).

The eigenproblem of this Hamiltonian can be solved in the BOA in which one assumes that the
motion towards fission, i.e. in the q2 coordinate, is much slower than the motion in the q3 and q4
collective variables. This implies that the eigenfunction of Ĥcoll can be approximated in our case in
the following form:

ΨnE(q2, q3, q4) = unE(q2) ϕn(q3, q4; q2) . (2)
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Figure 1. Potential energy surfaces on the (q2, q3) plane of even-even Pu isotopes minimized with respect to q4.

Here unE(q2) is the wave function for the fission (elongation) mode and ϕn are the eigenfunctions of the
Hamiltonian which describe the collective motion in the perpendicular directions. In the following we
shall use the WKB approximation for the unE(q2) wave function and consider only the lowest energy
eigenstate ϕn=0 since we are interested in fission at very low excitation energy. The effect of taking
into account higher states was discussed in Ref. [11].

The probability of finding the system, for a given elongation q2, in a deformation defined by
(q3, q4) is equal to

W(q3, q4; q2) = |Ψ(q3, q4; q2)|2 = |ϕ0(q3, q4; q2)|2 (3)

Our model is still simplified further. Instead of the square of the collective wave function (3), we take
the following Wigner function:

W(q3, q4; q2) ∼ exp
{
−

V(q3, q4; q2) − Veq(q2)
E0 + T

}
(4)

where Veq(q2) is the potential minimum for a given q2, E0 is the zero-point energy, treated here as a
free parameter and T is the temperature of the nucleus.

The probability distribution integrated over q4

w(q3; q2) =
∫

W(q3, q4; q2) dq4 , (5)

3

EPJ Web of Conferences 169, 00016 (2018) https://doi.org/10.1051/epjconf/201816900016
Theory-4



is directly related to the fragment mass yield at given elongation q2.
It is obvious that the fission probability should also depend on the neck radius. Following Ref. [12]

we assume a neck-rupture probability P in the form:

P(q2, q3, q4) =
k0

k
Pneck(Rneck) , (6)

where k is the momentum in the direction towards fission (or simply the velocity along q2), while
Rneck(q2, q3, q4) is the deformation-dependent neck radius. k0 plays the role of a scaling parameter.
The neck rupture probability [12] can be taken e.g. in one of the following forms:

Pneck(Rneck) =



exp[− ln 2(Rneck/d)2] Gauss

1/ cosh[(2 +
√

3)Rneck/d] 1/cosh

1/[1 + (Rneck/d)2] Lorentz

(7)

The parameter d is the half-width of the probability and is treated here as a free adjustable parameter.
The momentum k in Eq. (6) has to ensure that the probability depends on the time in which one

crosses the subsequent interval in q2: ∆t = ∆q2/v(q2), where

v(q2) = �k/M(q2) (8)

is the velocity towards fission. The inertia M(q2) is evaluated using the approximation proposed in
Ref. [21]:

M(q2) = µ
[
1 + 11.5 · (Birr/µ − 1)

] (∂R12

∂q2

)2
, (9)

where Birr is the irrotational inertia corresponding to the distance R12 between the fragments and µ is
the reduced mass. The value of k in Eq. (8) depends on the difference E −V(q2) and on the part of the
collective energy which is converted into heat Q:

�2k2

2M(q2)
= Ekin = E − Q − V(q2) . (10)

In order to introduce the neck-rupture probability P, in our formalism one has to rewrite the
probability distribution w(q3; q2) in the form

w(q3; q2) =
∫

W(q3, q4; q2)P(q3, q4, q2) dq4 . (11)

Such an approximation means that the fission process is spread over some region of q2 and that for a
given q2, at fixed mass asymmetry, one has to take into account the probability to fission at a previous
q2 value, i.e. one has to replace w(q3; q2) by

w′(q3; q2) = w(q3; q2)

1 −
∫

q′2≤q2

w(q3; q′2) dq′2

∫
w(q3; q′2) dq′2

. (12)

The integral mass yield can then be written as the sum of all partial yields at different q2:

Y(q3) =
∫
w′(q3; q2) dq2 /

∫
w′(q3; q2) dq2 dq3 . (13)

As one notices from (13), the scaling factor k0 in the expression for P, Eq. (6), has vanished and
does no longer appear in the definition of the mass yield. Our model thus has only two adjustable
parameters, E0 in Eq. (4) and the width parameter d, that appears in the neck-rupture probability (7).

4
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4 Results

The potential energy surfaces (PES), relative to the corresponding spherical LSD energy, were cal-
culated for even-even Plutonium isotopes 236−246Pu in the 3D (q2, q3, q4) deformation space, where
q2 describes the elongation of the nucleus, q3 its reflection asymmetry, and q4 controls the neck size
[8,9]. The (q2, q3; qmin

4 ) cross-sections of the PES minimized with respect to q4 are presented in Fig. 1.
Pronounced mass asymmetric (q3 � 0) fission valleys are visible in all isotopes beyond q2 ≈ 1. Sym-
metric fission valleys are generally present but lay always higher by a few MeV, and with a substantial
ridge separating them from the asymmetric valleys.

/R
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R
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Rn

A
  =

 1
3
2

Rα

A
  =

1
4
0

f

f
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Figure 2. (q3, q4) PES cross-section of 236Pu for q2 = 2.25.

It is obvious that 2D maps do not give a complete information about the way in which a system
goes to fission. The neck dimension, which for a given elongation q2 and asymmetry q3 depends on
q4, decides when fission occurs. The map of the PES of 236Pu on the (q3, q4) plane for q2 = 2.25 is
presented as an example in Fig. 2. Lines corresponding to a neck radius equal to the one (Rn) of a
nucleon, an alpha-particle (Rα), as well as of the heavier mass fragment Af

h = 132 and Af
h = 140 are

marked in the plot. It is seen that the deformation parameter q3 governs mostly the fragment mass,
while q4 is related to the neck size. The line corresponding to the distance R12/R0 = 2.25 between
the fragment mass centres is also shown. Note that in all other points of the map R12 differs from
this mean value by less than 5% what proves that at large elongations q2 is roughly a measure of the
distance between the fragments.

More informative are the projections of the PES’s for different elongations q2 onto the (Af
h ,Rneck)

maps presented in Fig. 3 for 236Pu. It is seen that the structure of the bottom of the fission valley
changes with increasing elongation of the nucleus. At smaller deformations q2 ≤ 2.25, the bottom
of the valley in the vicinity of Rneck = Rn, the size of a nucleon (thin solid), corresponds to the mass
of the heavier fragment Af

h = 140. At q2 = 2.3 already two valleys at 138 and 144 are visible,
while at q2 = 2.35 three fission valleys corresponding to 136, 141 and 146 are formed. The sizeable
dependence of the PES in the (Af

h ,Rneck) plane on the elongation coordinate q2 shows how important
is to take into account the subsequent steps in the fission process as explained above.
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Figure 3. Potential energy surfaces for different elongations q2 projected onto the (Af
h ,Rneck) plane.

The Wigner function (5) integrated over q4 is presented in Fig. 4 for different elongations q2 and
projected onto the Af

h axis, instead of the asymmetry parameter q3. Its maximum changes accordingly
to the properties of the fission valleys shown in Fig. 3. This set of Wigner functions weighted with the
neck-size dependent fission probability gives access to the mass yields (11) for different elongations
q2.

The final heavy-fragment mass yield (13), obtained for three different neck-breaking probabilities
(7) is shown in Fig. 5 for 240Pu, and compared to the yield measured in spontaneous fission [19]. The
differences between the theoretical yields are small as can be seen in the figure. We shall therefore
present in the following the results obtained with the Gauss distribution only keeping the half-width
fixed at d/R0 = 0.15 which roughly corresponds to the nucleon radius. The width-parameter E0 of the
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Figure 4. Wigner function for different elongations q2 as a function of the heavy-fragment mass number Af
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Figure 5. Heavy fragment mass yield for fission of 240Pu as obtained with three different neck-breaking proba-
bility functions (7). The half-width of each function is written above the plot. The calculation is compared to the
yield measured in spontaneous fission in Ref. [19].

Wigner function was taken as E0=1 MeV what corresponds to a typical energy of collective modes in
two dimensions (q3 and q4).

The spontaneous fission yields for six even-even Pu isotopes are compared in Fig. 6 with the
experimental data whenever available [19]. Please note that these theoretical estimates were obtained
with only two adjustable parameters d/R0 = 0.15 and E0 = 1 MeV. All other parameters of the model
are unchanged as compared to those adjusted years ago when considering still different data.

The total kinetic energy (TKE) of the fragments is evaluated in the point-charge approximation of
the Coulomb interaction energy between the fragments. No pre-fission kinetic energy is used in the
present calculation, i.e. we assume that the whole energy gain on the slope to scission is transferred
into heat. One has to bear in mind that for a given elongation q2 the mass of the fragment Af

h (q3, q4; q2)
and the TKE(q3, q4; q2) are functions of q3 and q4. So, it is easy to map the yields from the (q3, q4)
onto the (TKE, Af

h ) plane. The experimental data have a finite resolution in mass and in TKE, which in
not negligible for the present cases [19]. Typical values are σTKE=10 MeV and a variance of σAf

h
=1.5

a.m.u. Hence, the theoretical Af
h and TKE yields have to be folded according to these values before

they can be compared to the experiment. The resulting folded TKE yield is presented in Fig. 7 (top).

7

EPJ Web of Conferences 169, 00016 (2018) https://doi.org/10.1051/epjconf/201816900016
Theory-4



 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

236
Pu

Y
ie

ld
 (

%
)

A
f
h

th
exp

 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

238
Pu

Y
ie

ld
 (

%
)

A
f
h

th
exp

 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

240
Pu

Y
ie

ld
 (

%
)

A
f
h

th
exp

 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

242
Pu

Y
ie

ld
 (

%
)

A
f
h

th
exp

 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

244
Pu

Y
ie

ld
 (

%
)

A
f
h

th
exp

 0

 2

 4

 6

 8

 10

 120  125  130  135  140  145  150  155  160

246
Pu

Y
ie

ld
 (

%
)

A
f
h

th

Figure 6. Same as in Fig. 5 for fission of 236−246Pu but for the optimal calculation (see the text). The theoretical
results, obtained here without any folding procedure, are compared to the yield measured in spontaneous fission
in Ref. [19]) for 236−244Pu.

One can see in the figure that the maximum of the TKE yield for 240Pu corresponds to TKE ≈ 179 MeV
what is in line with the measured data [20]. The calculated correlation between the heavy-fragment
mass and the TKE is presented in Fig. 7 (bottom). Although a quantitative analysis is still to be done,
it is already noted that the theoretical correlation shows a trend similar to the experiment [22], with a
mean TKE larger for the lighest (Af

h ≈ 132) heavy-fragment group, than for the heaviest (Af
h ≈ 140)

group. The relatively good agreement of the TKE distribution and mean value with the experiment can
be considered as quite encouraging. Keep in mind, however, that our theoretical approach is still quite
crude, with the use of a Wigner functions for the probability distribution instead of the true quantum
mechanical density distributions, the absence in our calculations of extremely elongated shapes, since
it was impossible to construct for them a reliable Wigner function, the inclusion of only the lowest
energy phonon in the direction perpendicular to the scission mode, i.e. neglecting the dynamical
coupling of the fission and the perpendicular modes.

5 Summary

Summing up the following conclusion can be drawn from our investigation:

• an effective three-dimensional set of Fourier deformation parameters is used to describe the fission
process,

• a collective 3D model describing elongation, mass asymmetry and neck modes was introduced,

• a Wigner distribution is assumed for the neck and mass asymmetry degrees of freedom,

• a neck-breaking probability depending on the neck-size has been adopted,

• our 3D model which couples fission, neck and mass asymmetry modes is able to describe the main
features of the fragment mass and total kinetic energy yields.
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One can see in the figure that the maximum of the TKE yield for 240Pu corresponds to TKE ≈ 179 MeV
what is in line with the measured data [20]. The calculated correlation between the heavy-fragment
mass and the TKE is presented in Fig. 7 (bottom). Although a quantitative analysis is still to be done,
it is already noted that the theoretical correlation shows a trend similar to the experiment [22], with a
mean TKE larger for the lighest (Af

h ≈ 132) heavy-fragment group, than for the heaviest (Af
h ≈ 140)

group. The relatively good agreement of the TKE distribution and mean value with the experiment can
be considered as quite encouraging. Keep in mind, however, that our theoretical approach is still quite
crude, with the use of a Wigner functions for the probability distribution instead of the true quantum
mechanical density distributions, the absence in our calculations of extremely elongated shapes, since
it was impossible to construct for them a reliable Wigner function, the inclusion of only the lowest
energy phonon in the direction perpendicular to the scission mode, i.e. neglecting the dynamical
coupling of the fission and the perpendicular modes.

5 Summary

Summing up the following conclusion can be drawn from our investigation:

• an effective three-dimensional set of Fourier deformation parameters is used to describe the fission
process,

• a collective 3D model describing elongation, mass asymmetry and neck modes was introduced,

• a Wigner distribution is assumed for the neck and mass asymmetry degrees of freedom,

• a neck-breaking probability depending on the neck-size has been adopted,

• our 3D model which couples fission, neck and mass asymmetry modes is able to describe the main
features of the fragment mass and total kinetic energy yields.

 0

 1

 2

 3

 4

 5

 140  160  180  200  220

240
Pu (sf)

Y
ie

ld
 (

%
)

TKE  [MeV]

th folded
exp

Figure 7. Top: calculated and experimental (as measured in spontaneous-fission [20]) TKE distribution for 240Pu.
Bottom: calculated correlation between the heavy-fragment mass and the TKE. Calculated mass and TKE values
were folded with the experimental resolution (see text).

This contribution presents the present status of our research. Similar calculations are going to be
performed to describe low-energy fission of other isotopes. In parallel, we aim to develop a Langevin
code to study fission at higher energies with the new Fourier deformations space.
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No. 08-131 and by the Polish National Science Centre, grant No. 2013/11/B/ST2/04087.
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Appendix

A new nuclear shape parametrization [8, 9] is used that gives an expansion of the nuclear surface in
the form of a Fourier analysis in cylindrical coordinates

ρ2
s(z)
R2

0

=

∞∑
n=1

[
a2n cos

(
(2n − 1)π

2
z − zsh

z0

)
+ a2n+1 sin

(
2nπ

2
z − zsh

z0

)]
,

where, similarly to the famous "Funny-Hills" (FH) shape parametrization [5], ρs(z) defines the dis-
tance of the equivalent sharp surface from the symmetry z axis, and z0 is half the elongation of the
nuclear shape along that axis with end points located at zmin=zsh−z0 and zmax=zsh+z0. The coordinate
zsh is chosen so as to locate the centre of mass of the shape at the origin of the coordinate system. R0
represents the radius of the corresponding spherical shape having the same volume and z0=c R0.

The parameters a2, a3, a4 are related to elongation, left-right asymmetry, and neck degree of free-
dom, respectively. More and more elongated prolate shapes correspond to decreasing values of a2,
while oblate ones are described by a2 larger than one, which is somehow contrary to the traditional
definition of a quadrupole deformation parameter. So, it was proposed in Ref. [9] to use a more nat-
ural definition of deformation parameters which in addition ensures that along the LD fission path
these parameters show only a small variation around zero:

q2 =
a(0)

2
a2
− a2

a(0)
2
, q3 = a3 , q4 = a4 +

√(
q2
9

)2
+
(
a(0)

4

)2
,

q5 = a5 − (q2 − 2) a3
10 , q6 = a6 −

√(
q2

100

)2
+
(
a(0)

6

)2
.

Here a(0)
n stands for the value of the an coefficient in the spherically symmetric case:

a(0)
2 = 1.03205 , a(0)

4 = −0.03822 , a(0)
6 = 0.00826 .
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