229 research outputs found

    Variability of aliphatic glucosinolates in Arabidopsis thaliana (L.) – Impact on glucosinolate profile and insect resistance

    Get PDF
    The glucosinolate(GS)-myrosinase system of Brassicaceae, including the model plant Arabidopsis thaliana (L.), comprises a defence which is effective especially against generalist herbivores. Based on their side chain structure GS are grouped into aliphatic, aromatic, and indolyl GS. Indolyl GS are widely distributed among A. thaliana ecotypes and the Brassicaceae family, but the presence of aliphatic GS is variable and under strong genetic control. We investigated the effect of AOP gene expression on the side chain modifications of GS and the impact on insect resistance. AOP2 and AOP3 genes from Mr-0 and Sap-0 ecotypes, respectively, were crossbred into the methylsulfinyl GS producing Gie-0. Successful crosses were heterozygote plants which produced allyl (AOP2) or 3-hydroxypropyl GS (AOP3). After self-pollination, the chemical profile of the F3 generation of plants was screened to identify homozygote lines. Homozygote lines producing 3-hydroxypropyl GS were compared to methylsulfinyl GS, which were used to study the impact of GS structure on insect performance in first experiments. Our experiments revealed that methylsulfinyl GS containing ecotype lines were more resistant to the generalist caterpillar Spodoptera exigua (Hübner) and to the specialist caterpillar Pieris brassicae (L.) than the lines containing hydroxypropyl GS as main compounds

    Influence of the season on the salicylate and phenolic glycoside contents in the bark of Salix daphnoides, Salix pentandra, and Salix purpurea

    Get PDF
    Due to the benefits of herbal medicine and their wide range of application for human health, the usage of natural drug products, such as willow bark extract, has increased in the last few years. The principle active compounds of the drugs comprised primarily of willow bark are phenolic glycosides like salicylates. Phenolic glycoside profiles of bark vary among species and between the seasons. To identify and preserve willow clones with high salicylate content for possible commercial usage at a later stage, we have screened three Salix sp. in respect to their chemical profiles. The willow species analysed were: Salix daphnoides, Salix pentandra, and Salix purpurea. These species had distinct phenolic glycoside profiles. The major salicylate of S. daphnoides and S. purpurea clones was salicortin, whereas the main compound of S. pentandra was 2’- O-acetylsalicortin. According to the chemical profiles of 140 clones, seven independent clones of S. daphnoides and S. purpurea as well as four clones of S. pentandra with high phenolic glycoside contents were picked to study seasonal changes in bark chemistry. Overall, the clones of S. daphnoides showed the highest mean salicylate and phenolic glycoside contents, followed by S. pupurea and S. pentandra. The secondary metabolite content of willow bark clones decreased during the vegetative season from March to June 2007 and further from June to July 2007. Our study revealed that for optimum yield of phenolic glycosides the species, the clone, and the time of harvest during the season have to be taken in consideration

    Impact of glucosinolate structure on the performance of the crucifer pest Phaedon cochleariae (F.)

    Get PDF
    Glucosinolates (GS) are sulfur-rich secondary metabolites found in the Brassicaceae and other related families of the order Brassicales. GS consist of structurally-related compounds with different side chains. To explore the possibility that various side chain confer divergent biological activities to individual GS, we have investigated the performance of the specialist pest beetle, Phaedon cochleariae (F.) on Arabidopsis thaliana L. mutants and Columbia wild-type (WT) which differ in the main group of GS. Plant lines of A. thaliana altered for the expression of MAM3, because of the introduction of an overexpression construct of MAM3 (mam3+) or containing double knockouts of CYP79B2 and CYP79B3 (cyp79B2-/cyp79B3-) were used for the study in comparison to the WT.A. thaliana genotypes differed in their GS profiles. The highest GS content was present in the WT followed by mam3+ and cyp79B2-/ cyp79B3-. A modified aliphatic GS content was detected for the mam3+ as compared to the WT lines. Furthermore, indolyl GS were completely absent in cyp79B2-/cyp79B3-. The percentage weight increase of larvae raised on each of the three plant genotypes was significant different. Larval performance was poorest on plants of cyp79B2-/cyp79B3- and best on WT, but there was no significant difference found in percentage weight increase on mam3+ and WT. There was no correlation between the weight increase of the larvae on genotypes and induced levels of aliphatic, indolyl, and total GS. However, the poor performance of beetle larvae on cyp79B2-/ cyp79B3-compared to WT and mam3+ might be explained by comparable high aliphatic GS levels of this mutant, a different induction of secondary metabolites, and the absence of indolyl GS. Basic knowledge about the relationship of GS structures and their insect pests may help in further resistance breeding of crucifer crops

    Topological change of the Fermi surface in ternary iron-pnictides with reduced c/a ratio: A dHvA study of CaFe2P2

    Full text link
    We report a de Haas-van Alphen effect study of the Fermi surface of CaFe2P2 using low temperature torque magnetometry up to 45 T. This system is a close structural analogue of the collapsed tetragonal non-magnetic phase of CaFe2As2. We find the Fermi surface of CaFe2P2 to differ from other related ternary phosphides in that its topology is highly dispersive in the c-axis, being three-dimensional in character and with identical mass enhancement on both electron and hole pockets (~1.5). The dramatic change in topology of the Fermi surface suggests that in a state with reduced (c/a) ratio, when bonding between pnictogen layers becomes important, the Fermi surface sheets are unlikely to be nested

    Fermi surface of SrFe2_2P2_2 determined by de Haas-van Alphen effect

    Get PDF
    We report measurements of the Fermi surface (FS) of the ternary phosphide SrFe2_2P2_2 using the de Haas-van Alphen effect. The calculated FS of this compound is very similar to SrFe2_2As2_2, the parent compound of the high temperature superconductors. Our data show that the Fermi surface is composed of two electron and two hole sheets in agreement with bandstructure calculations. Several of the sheets show strong c-axis warping emphasizing the importance of three-dimensionality in the non-magnetic state of the ternary pnictides. We find that the electron and hole pockets have a different topology, implying that this material does not satisfy a nesting condition.Comment: 5 pages, 4 Figures, 1 Tabl

    Synthesis, characterisation and quantification of the new psychoactive substance 1-(1,3-benzodioxol-5-yl)-2-(propylamino)butan-1-one (bk-PBDB, putylone)

    Get PDF
    Synthetic cathinones are a continually evolving family of illicit drugs, with novel analogues frequently being detected. This paper reports the detection of 1-(1,3-benzodioxol-5-yl)-2-(propylamino)butan-1-one, bk-PBDB (putylone), within solid dosage forms (tablets) seized by law enforcement for the first time in the United Kingdom. The identity of the compound was confirmed via the synthesis of a pure bk-PBDB reference standard and direct spectral comparison by 1H NMR and GC-EI-MS analysis. A full analytical profiling of bk-PBDB by nuclear magnetic resonance (NMR), attenuated total reflection Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-electron ionisation-mass spectrometry (GC-EI-MS) is reported and shows good concordance between the seized sample and the reference standard. A validated GC-EI-MS method for the routine quantification of the cathinone in bulk forensic samples (LOD: 0.09 μg/mL, LOQ: 0.26 μg/mL) was also developed and using this method, the seized tablets were determined to contain a mixture of bk-PBDB (130.6–135.5 mg/tablet) and caffeine (40.2–43.4 mg/tablet) respectively

    Improving the hyperpolarization of (31)p nuclei by synthetic design

    Get PDF
    Traditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan (31)P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. (31)P-hyperpolarized images are also reported from a 7 T preclinical scanner

    Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis

    Get PDF
    The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs
    • …
    corecore