173 research outputs found
Preclinical Assessment of HIV Vaccines and Microbicides by Repeated Low-Dose Virus Challenges
BACKGROUND: Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against “real life” exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses. METHODS AND FINDINGS: Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success. CONCLUSION: Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions
Estimating Influenza Vaccine Efficacy From Challenge and Community-based Study Data
In this paper, the authors provide estimates of 4 measures of vaccine efficacy for live, attenuated and inactivated influenza vaccine based on secondary analysis of 5 experimental influenza challenge studies in seronegative adults and community-based vaccine trials. The 4 vaccine efficacy measures are for susceptibility (VES), symptomatic illness given infection (VEP), infection and illness (VESP), and infectiousness (VEI). The authors also propose a combined (VEC) measure of the reduction in transmission in the entire population based on all of the above efficacy measures. Live influenza vaccine and inactivated vaccine provided similar protection against laboratory-confirmed infection (for live vaccine: VES = 41%, 95% confidence interval (CI): 15, 66; for inactivated vaccine: VES = 43%, 95% CI: 8, 79). Live vaccine had a higher efficacy for illness given infection (VEP = 67%, 95% CI: 24, 100) than inactivated vaccine (VEP = 29%, 95% CI: −19, 76), although the difference was not statistically significant. VESP for the live vaccine was higher than for the inactivated vaccine. VEI estimates were particularly low for these influenza vaccines. VESP and VEC can remain high for both vaccines, even when VEI is relatively low, as long as the other 2 measures of vaccine efficacy are relatively high
Equation-Free Multiscale Computations in Social Networks: from Agent-based Modelling to Coarse-grained Stability and Bifurcation Analysis
We focus at the interface between multiscale computations, bifurcation theory
and social networks. In particular we address how the Equation-Free approach, a
recently developed computational framework, can be exploited to systematically
extract coarse-grained, emergent dynamical information by bridging detailed,
agent-based models of social interactions on networks, with macroscopic,
systems-level, continuum numerical analysis tools. For our illustrations we use
a simple dynamic agent-based model describing the propagation of information
between individuals interacting under mimesis in a social network with private
and public information. We describe the rules governing the evolution of the
agents emotional state dynamics and discover, through simulation, multiple
stable stationary states as a function of the network topology. Using the
Equation-Free approach we track the dependence of these stationary solutions on
network parameters and quantify their stability in the form of coarse-grained
bifurcation diagrams
Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas
Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic’s first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies. Copyright © 2022 the Author(s
Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study
Background: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. Methods: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. Findings: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0–18% for no vaccination, 0–33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0–72% for three-department campaigns, and 35–100% for nationwide campaigns. Two-department campaigns averted a median of 12–58% of infections, three-department campaigns averted 29–80% of infections, and national campaigns averted 58–95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0–95% and the proportion of cases averted to 37–86%. Interpretation: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. Funding: Bill & Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health
Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning
We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool
Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling
In light of the 2009 influenza pandemic and potential future pandemics, Maria Van Kerkhove and colleagues anticipate six public health challenges and the data needed to support sound public health decision making
Dynamic Health Policies for Controlling the Spread of Emerging Infections: Influenza as an Example
The recent appearance and spread of novel infectious pathogens provide motivation for using models as tools to guide public health decision-making. Here we describe a modeling approach for developing dynamic health policies that allow for adaptive decision-making as new data become available during an epidemic. In contrast to static health policies which have generally been selected by comparing the performance of a limited number of pre-determined sequences of interventions within simulation or mathematical models, dynamic health policies produce “real-time” recommendations for the choice of the best current intervention based on the observable state of the epidemic. Using cumulative real-time data for disease spread coupled with current information about resource availability, these policies provide recommendations for interventions that optimally utilize available resources to preserve the overall health of the population. We illustrate the design and implementation of a dynamic health policy for the control of a novel strain of influenza, where we assume that two types of intervention may be available during the epidemic: (1) vaccines and antiviral drugs, and (2) transmission reducing measures, such as social distancing or mask use, that may be turned “on” or “off” repeatedly during the course of epidemic. In this example, the optimal dynamic health policy maximizes the overall population's health during the epidemic by specifying at any point of time, based on observable conditions, (1) the number of individuals to vaccinate if vaccines are available, and (2) whether the transmission-reducing intervention should be either employed or removed
Dynamics and Control of Diseases in Networks with Community Structure
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies
The Impact of Case Diagnosis Coverage and Diagnosis Delays on the Effectiveness of Antiviral Strategies in Mitigating Pandemic Influenza A/H1N1 2009
BACKGROUND: Neuraminidase inhibitors were used to reduce the transmission of pandemic influenza A/H1N1 2009 at the early stages of the 2009/2010 pandemic. Policies for diagnosis of influenza for the purposes of antiviral intervention differed markedly between and within countries, leading to differences in the timing and scale of antiviral usage. METHODOLOGY/PRINCIPAL FINDINGS: The impact of the percentage of symptomatic infected individuals who were diagnosed, and of delays to diagnosis, for three antiviral intervention strategies (each with and without school closure) were determined using a simulation model of an Australian community. Epidemic characteristics were based on actual data from the A/H1N1 2009 pandemic including reproduction number, serial interval and age-specific infection rate profile. In the absence of intervention an illness attack rate (AR) of 24.5% was determined from an estimated R(0) of 1.5; this was reduced to 21%, 16.5% or 13% by treatment-only, treatment plus household prophylaxis, or treatment plus household plus extended prophylaxis antiviral interventions respectively, assuming that diagnosis occurred 24 hours after symptoms arose and that 50% of symptomatic cases were diagnosed. If diagnosis occurred without delay, ARs decreased to 17%, 12.2% or 8.8% respectively. If 90% of symptomatic cases were diagnosed (with a 24 hour delay), ARs decreased to 17.8%, 11.1% and 7.6%, respectively. CONCLUSION: The ability to rapidly diagnose symptomatic cases and to diagnose a high proportion of cases was shown to improve the effectiveness of all three antiviral strategies. For epidemics with R(0)< = 1.5 our results suggest that when the case diagnosis coverage exceeds ∼70% the size of the antiviral stockpile required to implement the extended prophylactic strategy decreases. The addition of at least four weeks of school closure was found to further reduce cumulative and peak attack rates and the size of the required antiviral stockpile
- …