1,600 research outputs found

    Dynamical evolution of gravitational leptogenesis

    Get PDF
    Radiatively-induced gravitational leptogenesis is a potential mechanism to explain the observed matter-antimatter asymmetry of the universe. Gravitational tidal effects at the quantum loop level modify the dynamics of the leptons in curved spacetime and may be encoded in a low-energy effective action Seff . It has been shown in previous work how in a high-scale BSM theory the CP odd curvature-induced interactions in Seff modify the dispersion relations of leptons and antileptons differently in an expanding universe, giving rise to an effective chemical potential and a non-vanishing equilibrium lepton-antilepton asymmetry. In this paper, the CP even curvature interactions are shown to break lepton number current conservation and modify the evolution of the lepton number density as the universe expands. These effects are implemented in a generalised Boltzmann equation and used to trace the dynamical evolution of the lepton number density in different cosmological scenarios. The theory predicts a potentially significant gravitationally-induced lepton-antilepton asymmetry at very early times in the evolution of the universe

    Multiple Scattering Theory for Two-dimensional Electron Gases in the Presence of Spin-Orbit Coupling

    Full text link
    In order to model the phase-coherent scattering of electrons in two-dimensional electron gases in the presence of Rashba spin-orbit coupling, a general partial-wave expansion is developed for scattering from a cylindrically symmetric potential. The theory is applied to possible electron flow imaging experiments using a moveable scanning probe microscope tip. In such experiments, it is demonstrated theoretically that the Rashba spin-orbit coupling can give rise to spin interference effects, even for unpolarized electrons at nonzero temperature and no magnetic field.Comment: 34 pages, 7 figure

    Decoherence, discord, and the quantum master equation for cosmological perturbations

    Get PDF
    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contribution to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively

    Transitioning to sustainable healthy diets: A model-based and conceptual system thinking approach to optimized sustainable diet concepts in the United States

    Get PDF
    Food production and consumption are essential in human existence, yet they are implicated in the high occurrences of preventable chronic diseases and environmental degradation. Although healthy food may not necessarily be sustainable and vice versa, there is an opportunity to make our food both healthy and sustainable. Attempts have been made to conceptualize how sustainable healthy food may be produced and consumed; however, available data suggest a rise in the prevalence of health-related and negative environmental consequences of our food supply. Thus, the transition from conceptual frameworks to implementing these concepts has not always been effective. This paper explores the relative environmental and health risks associated with highly consumed food groups and develops a methodological workflow for evaluating the sustainability of diet concepts in the context of different health, socio-economic and environmental indicators. In addition, we apply the multi-criteria decision-making techniques (an integrated Analytic Hierarchy Process- Technique for order preference by similarity to ideal solution (AHP-TOPSIS) model) to examine the health and environmental impact of selected sustainable healthy diet concepts implemented in the United States. The principal findings indicate that adopting plant-based diet patterns would benefit the environment and the population's health. However, the up-scale, broad adoption and implementation of these concepts are hindered by critical bottlenecks. Hence we propose potential modification strategies through a conceptual system thinking approach to deliver optimized sustainable diet concepts to aid in the realization of the anticipated benefits of adoption/implementation

    Simulated herbivory : the key to disentangling plant defence responses

    Get PDF
    Plants are subjected to a multitude of stimuli during insect herbivory, resulting in a complex and cumulative defence response. Breaking down the components of herbivory into specific stimuli and identifying the mechanisms of defence associated with them has thus far been challenging. Advances in our understanding of responses to inconspicuous stimuli, such as those induced by microbial symbionts in herbivore secretions and mechanical stimulation caused by insects, have illuminated the intricacies of herbivory. Here, we provide a synthesis of the interacting impacts of herbivory on plants and the consequential complexities associated with uncoupling defence responses. We propose that simulated herbivory should be used to complement true herbivory to decipher the mechanisms of insect herbivore-induced plant defence responses

    Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    Get PDF
    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown

    A Comprehensive Study of the Efficiency of Type-Reduction Algorithms

    Get PDF
    Improving the efficiency of type-reduction algorithms continues to attract research interest. Recently, there have been some new type-reduction approaches claiming that they are more efficient than the well-known algorithms such as the enhanced Karnik-Mendel (EKM) and the enhanced iterative algorithm with stopping condition (EIASC). In a previous paper, we found that the computational efficiency of an algorithm is closely related to the platform, and how it is implemented. In computer science, the dependence on languages is usually avoided by focusing on the complexity of algorithms (using big O notation). In this paper, the main contribution is the proposal of two novel type-reduction algorithms. Also, for the first time, a comprehensive study on both existing and new type-reduction approaches is made based on both algorithm complexity and practical computational time under a variety of programming languages. Based on the results, suggestions are given for the preferred algorithms in different scenarios depending on implementation platform and application context
    • …
    corecore