9,863 research outputs found

    Activated escape of periodically modulated systems

    Full text link
    The rate of noise-induced escape from a metastable state of a periodically modulated overdamped system is found for an arbitrary modulation amplitude AA. The instantaneous escape rate displays peaks that vary with the modulation from Gaussian to strongly asymmetric. The prefactor ν\nu in the period-averaged escape rate depends on AA nonmonotonically. Near the bifurcation amplitude AcA_c it scales as ν(AcA)ζ\nu\propto (A_c-A)^{\zeta}. We identify three scaling regimes, with ζ=1/4,1\zeta = 1/4, -1, and 1/2

    Accounting for Convective Blue-Shifts in the Determination of Absolute Stellar Radial Velocities

    Full text link
    For late-type non-active stars, gravitational redshifts and convective blueshifts are the main source of biases in the determination of radial velocities. If ignored, these effects can introduce systematic errors of the order of ~ 0.5 km/s. We demonstrate that three-dimensional hydrodynamical simulations of solar surface convection can be used to predict the convective blue-shifts of weak spectral lines in solar-like stars to ~ 0.070 km/s. Using accurate trigonometric parallaxes and stellar evolution models, the gravitational redshifts can be constrained with a similar uncertainty, leading to absolute radial velocities accurate to better than ~ 0.1 km/s.Comment: To appear in the proceedings of the Joint Discussion 10, IAU General Assembly, Rio de Janeiro, August 10-11, 200

    Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    Full text link
    We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.Comment: 5 pages, 4 figure

    Minimal conductivity in bilayer graphene

    Get PDF
    Using the Landauer formula approach, it is proven that minimal conductivity of order of e2/he^{2}/h found experimentally in bilayer graphene is its intrinsic property. For the case of ideal crystals, the conductivity turns our to be equal to e2/2he^{2}/2h per valley per spin. A zero-temperature shot noise in bilayer graphene is considered and the Fano factor is calculated. Its value 12/π1-2/\pi is close to the value 1/3 found earlier for the single-layer graphene.Comment: 3 pages, 1 figur

    Non-Fermi liquid behavior in Kondo models

    Full text link
    Despite the fact that the low energy behavior of the basic Kondo model cannot be studied perturbatively it was eventually shown by Wilson, Anderson, Nozieres and others to have a simple "local Fermi liquid theory" description. That is, electronic degrees of freedom become effectively non-interacting in the zero energy limit. However, generalized versions of the Kondo model involving more than one channel or impurity may exhibit low energy behavior of a less trivial sort which can, nonetheless, be solved exactly using either Bethe ansatz or conformal field theory and bosonization techniques. Now the low energy limit exhibits interacting many body behavior. For example, processes in which a single electron scatters off the impurity into a multi electron-hole state have a non-vanishing (and sometimes large) amplitude at zero energy. This corresponds to a rare solveable example of non-Fermi liquid behavior. Essential features of these phenomena are reviewed.Comment: A brief review submitted to the special issue of J. Phys. Soc. of Japan, "Kondo effect -- 40 years after the discovery

    Isotope Spectroscopy

    Get PDF
    The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high-resolution, high-quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6^6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non-LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal-poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere.Comment: AIP Thinkshop 10 "High resolution optical spectroscopy", invited talk, AN in pres

    Abelian bosonization approach to quantum impurity problems

    Full text link
    Using Abelian Bosonization, we develop a simple and powerful method to calculate the correlation functions of the two channel Kondo model and its variants. The method can also be used to identify all the possible boundary fixed points and their maximum symmetry, to calculate straightforwardly the finite size spectra, to demonstrate the physical picture at the boundary explicitly. Comparisons with Non-Abelian Bosonization method are made. Some fixed points corresponding to 4 pieces of bulk fermions coupled to s=1/2 impurity are listed.Comment: 12 pages, REVTEX, 1 Table, no figures. To appear in Phys. Rev. Letts. July 21, 199

    3D molecular line formation in dwarf carbon-enhanced metal-poor stars

    Full text link
    We present a detailed analysis of the carbon and nitrogen abundances of two dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey of extremely metal-poor dwarf candidates from the Sloan Digital SkySurvey (SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by `classical' 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD 3D hydrodynamical model atmospheres and the Linfor3D line formation code, molecular lines of CH, NH, OH and C2 were computed, and 3D carbon, nitrogen and oxygen abundances were determined. The resulting carbon abundances were compared to abundances derived using atomic CI lines in 1D LTE and NLTE. There is not a good agreement between the carbon abundances determined from C2 bands and from the CH band, and molecular lines do not agree with the atomic CI lines. Although this may be partly due to uncertainties in the transition probabilities of the molecular bands it certainly has to do with the temperature structure of the outer layers of the adopted model atmosphere. We explore the influence of the 3D model properties on the molecular abundance determination. In particular, the choice of the number of opacity bins used in the model calculations and its subsequent effects on the temperature structure and molecular line formation is discussed. (Abridged)Comment: Poster presented at IAU JD 10, Rio de Janeiro, 10-11 August 2009, published in Memorie della Societa' Astronomica Italiana, Vol. 80 n.3 P.735. One reference corrected, matches the published versio
    corecore