1,220 research outputs found

    Quantum Control of Two-Qubit Entanglement Dissipation

    Full text link
    We investigate quantum control of the dissipation of entanglement under environmental decoherence. We show by means of a simple two-qubit model that standard control methods - coherent or open-loop control - will not in general prevent entanglement loss. However, we propose a control method utilising a Wiseman-Milburn feedback/measurement control scheme which will effectively negate environmental entanglement dissipation.Comment: 11 pages,4 figures, minor correctio

    Universal bounds for the Holevo quantity, coherent information \\ and the Jensen-Shannon divergence

    Full text link
    The Holevo quantity provides an upper bound for the mutual information between the sender of a classical message encoded in quantum carriers and the receiver. Applying the strong sub-additivity of entropy we prove that the Holevo quantity associated with an initial state and a given quantum operation represented in its Kraus form is not larger than the exchange entropy. This implies upper bounds for the coherent information and for the quantum Jensen--Shannon divergence. Restricting our attention to classical information we bound the transmission distance between any two probability distributions by the entropic distance, which is a concave function of the Hellinger distance.Comment: 5 pages, 2 figure

    On the quantum, classical and total amount of correlations in a quantum state

    Full text link
    We give an operational definition of the quantum, classical and total amount of correlations in a bipartite quantum state. We argue that these quantities can be defined via the amount of work (noise) that is required to erase (destroy) the correlations: for the total correlation, we have to erase completely, for the quantum correlation one has to erase until a separable state is obtained, and the classical correlation is the maximal correlation left after erasing the quantum correlations. In particular, we show that the total amount of correlations is equal to the quantum mutual information, thus providing it with a direct operational interpretation for the first time. As a byproduct, we obtain a direct, operational and elementary proof of strong subadditivity of quantum entropy.Comment: 12 pages ReVTeX4, 2 eps figures. v2 has some arguments clarified and references update

    On the security and degradability of Gaussian channels

    Get PDF
    We consider the notion of canonical attacks, which are the cryptographic analog of the canonical forms of a one-mode Gaussian channel. Using this notion, we explore the connections between the degradability properties of the channel and its security for quantum key distribution. Finally, we also show some relations between canonical attacks and optimal Gaussian cloners.Comment: Proceeding of TQC2009, 4th Workshop on Theory of Quantum Computation, Communication, and Cryptography, Waterloo, Canada, 11-13 May 200

    Non-Markovian Quantum Trajectories Versus Master Equations: Finite Temperature Heat Bath

    Full text link
    The interrelationship between the non-Markovian stochastic Schr\"odinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite temperature reservoir in the rotating wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity and unity.Comment: 19 pages, typos corrected, references adde

    Decoherence due to contacts in ballistic nanostructures

    Full text link
    The active region of a ballistic nanostructure is an open quantum-mechanical system, whose nonunitary evolution (decoherence) towards a nonequilibrium steady state is determined by carrier injection from the contacts. The purpose of this paper is to provide a simple theoretical description of the contact-induced decoherence in ballistic nanostructures, which is established within the framework of the open systems theory. The active region's evolution in the presence of contacts is generally non-Markovian. However, if the contacts' energy relaxation due to electron-electron scattering is sufficiently fast, then the contacts can be considered memoryless on timescales coarsened over their energy relaxation time, and the evolution of the current-limiting active region can be considered Markovian. Therefore, we first derive a general Markovian map in the presence of a memoryless environment, by coarse-graining the exact short-time non-Markovian dynamics of an abstract open system over the environment memory-loss time, and we give the requirements for the validity of this map. We then introduce a model contact-active region interaction that describes carrier injection from the contacts for a generic two-terminal ballistic nanostructure. Starting from this model interaction and using the Markovian dynamics derived by coarse-graining over the effective memory-loss time of the contacts, we derive the formulas for the nonequilibrium steady-state distribution functions of the forward and backward propagating states in the nanostructure's active region. On the example of a double-barrier tunneling structure, the present approach yields an I-V curve with all the prominent resonant features. The relationship to the Landauer-B\"{u}ttiker formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio

    Remarks on a Proposed Super-Kamiokande Test for Quantum Gravity Induced Decoherence Effects

    Full text link
    Lisi, Marrone, and Montanino have recently proposed a test for quantum gravity induced decoherence effects in neutrino oscillations observed at Super-Kamiokande. We comment here that their equations have the same qualitative form as the energy conserving objective state vector reduction equations discussed by a number of authors. However, using the Planckian parameter value proposed to explain state vector reduction leads to a neutrino oscillation effect many orders of magnitude smaller than would be detectable at Super-Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber spontaneous localization approach to state vector reduction, and our remarks are relevant as well to proposed KK meson and BB meson tests of gravity induced decoherence.Comment: 10 pages, plain Tex, no figure

    Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect

    Full text link
    We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line resonator. Starting from a master equation description of this coupled system and using a polaron transformation, we obtain an exact effective master equation for the qubit. We then use quantum trajectory theory to investigate the measurement of the qubit by continuous homodyne measurement of the resonator out-field. Using the same porlaron transformation, a stochastic master equation for the conditional state of the qubit is obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover from diffusive to jump-like behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is shown to exhibit quantum Zeno behavior.Comment: 20 pages, 12 figure

    Resolution of the clinical features of tyrosinemia following orthotopic liver transplantation for hepatoma

    Get PDF
    The clinical history before transplantation and subsequent clinical and biochemical course of 3 children and one adult with hereditary tyrosinemia treated by orthotopic hepatic transplantation is described. All four patients are now free of their previous dietary restrictions and appear to be cured of both their metabolic disease and their hepatic neoplasm. © 1986 Elsevier Science Publishers B.V. All rights reserved

    High photon energy spectroscopy of NiO: experiment and theory

    Get PDF
    We have revisited the valence band electronic structure of NiO by means of hard x-ray photoemission spectroscopy (HAXPES) together with theoretical calculations using both the GW method and the local density approximation + dynamical mean-field theory (LDA+DMFT) approaches. The effective impurity problem in DMFT is solved through the exact diagonalization (ED) method. We show that the LDA+DMFT method alone cannot explain all the observed structures in the HAXPES spectra. GW corrections are required for the O bands and Ni-s and p derived states to properly position their binding energies. Our results establish that a combination of the GW and DMFT methods is necessary for correctly describing the electronic structure of NiO in a proper ab-initio framework. We also demonstrate that the inclusion of photoionization cross section is crucial to interpret the HAXPES spectra of NiO.We argue that our conclusions are general and that the here suggested approach is appropriate for any complex transition metal oxide.Comment: 16 pages, 5 figure
    corecore