54 research outputs found

    Expression pattern of the human ABC transporters in pluripotent embryonic stem cells and in their derivatives

    Get PDF
    Background: ATP-binding Cassette (ABC) transporters have key roles in various physiological functions as well as providing chemical defense and stress tolerance in human tissues. In this study we have examined the expression pattern of all ABC proteins in pluripotent human embryonic stem cells (hESCs) and in their differentiated progenies. We paid special attention to the cellular expression and localization of multidrug transporter ABC proteins. Methods: Stem cell differentiation was carried out without chemical induction or cell sorting, and specialized cell types were separated mechanically. Cellular features regarding pluripotency and tissue identity, as well as ABC transporter expression were studied by flow cytomtery, immuno-microscopy and qPCR-based low-density arrays. Results: Pluripotent hESCs and differentiated cell types (cardiomyocytes, neuronal cells and mesenchymal stem cells) were distinguished by morphology, immunostaining markers and selected mRNA expression patterns. We found that the mRNA expression levels of the 48 human ABC proteins also clearly distinguished the pluripotent and the respective differentiated cell types. When multidrug and lipid transporter ABC protein expression was examined by using well characterized specific antibodies by flow cytometry and confocal microscopy, the protein expression data corresponded well to the mRNA expression results. Moreover, the cellular localization of these important human ABC transporter proteins could be established in the pluripotent and differentiated hESC derived samples. Conclusions: These studies provide valuable information regarding ABC protein expression in human stem cells and their differentiated offspring. The results may also help to obtain further information concerning the specialized cellular functions of selected ABC transporter

    CD44 Expression Intensity Marks Colorectal Cancer Cell Subpopulations with Different Extracellular Vesicle Release Capacity

    Get PDF
    Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44(high) cells produce more organoids with a higher proliferation intensity, as compared to CD44(low) cells. Interestingly, we detected an increased EV release by CD44(high) CRC cells. In addition, we found that the miRNA cargos of CD44(high) and CD44(low) cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44(high) cells induced the proliferation and activation of colon fibroblasts more strongly than CD44(low) cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation

    Extracellular Vesicle Release and Uptake by the Liver Under Normo‐ and Hyperlipidemia

    Get PDF
    Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with (99m)Tc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with (99m)Tc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using (99m)Tc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-021-03969-6

    ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks

    Get PDF
    An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at <0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005–0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain

    Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo

    Get PDF
    During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca2+ potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed ‘spikelets’ during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers
    corecore