2,464 research outputs found

    Microwave-induced Hall resistance in bilayer electron systems

    Get PDF
    The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic field reversal in the microwave-induced Hall resistance ΔRxy\Delta R_{xy} whereas the dissipative resistance ΔRxx\Delta R_{xx} obeys even symmetry. Studies of ΔRxy\Delta R_{xy} as a function of the microwave electric field and polarization exhibit a strong and non-trivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.Comment: 8 pages, 5 figure

    High-resolution wide-band Fast Fourier Transform spectrometers

    Full text link
    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 seconds. An enhancement of the present 2.5 GHz XFFTS will duplicate the number of spectral channels (64k), offering spectroscopy with even better resolution during Cycle 1 observations.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_{4}

    Get PDF
    We present a study of the model spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_4 using simultaneous AC susceptibility, magnetization and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore avalanche-like relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200−300200 - 300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.Comment: 6 pages, 4 figure

    Free-electron Model for Mesoscopic Force Fluctuations in Nanowires

    Full text link
    When two metal electrodes are separated, a nanometer sized wire (nanowire) is formed just before the contact breaks. The electrical conduction measured during this retraction process shows signs of quantized conductance in units of G_0=2e^2/h. Recent experiments show that the force acting on the wire during separation fluctuates, which has been interpreted as being due to atomic rearrangements. In this report we use a simple free electron model, for two simple geometries, and show that the electronic contribution to the force fluctuations is comparable to the experimentally found values, about 2 nN.Comment: 4 pages, 3 figures, reference correcte

    Rotation of an atomic Bose-Einstein condensate with and without a quantized vortex

    Full text link
    We theoretically examine the rotation of an atomic Bose-Einstein condensate in an elliptical trap, both in the absence and presence of a quantized vortex. Two methods of introducing the rotating potential are considered - adiabatically increasing the rotation frequency at fixed ellipticity, and adiabatically increasing the trap ellipticity at fixed rotation frequency. Extensive simulations of the Gross-Pitaevskii equation are employed to map out the points where the condensate becomes unstable and ultimately forms a vortex lattice. We highlight the key features of having a quantized vortex in the initial condensate. In particular, we find that the presence of the vortex causes the instabilities to shift to lower or higher rotation frequencies, depending on the direction of the vortex relative to the trap rotation.Comment: 15 pages, 8 figure

    Charm-sea Contribution to High-p_T \psi Production at the Fermilab Tevatron

    Full text link
    The direct production of J/ψ(ψâ€Č)J/\psi(\psi') at large transverse momentum, pT≫MJ/ψp_T \gg M_{J/\psi}, at the Fermilab Tevatron is revisited. It is found that the sea-quark initiated processes dominate in the high-pTp_T region within the framework of color-singlet model, which is not widely realized. We think this finding is enlightening for further investigation on the charmonium production mechanism.Comment: Conclusions not changed, to appear in J. of Phys.

    Heavy Quark Production and PDF's Subgroup Report

    Get PDF
    We present a status report of a variety of projects related to heavy quark production and parton distributions for the Tevatron Run II.Comment: Latex. 8 pages, 7 eps figures. Contribution to the Physics at Run II Workshops: QCD and Weak Boson Physic

    Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field

    Full text link
    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin\chi_{spin} of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that χspin\chi_{spin} increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H)\chi_{spin}(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of χspin\chi_{spin} at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.Comment: To appea
    • 

    corecore