100 research outputs found

    Dissipative Dynamics of Matter Wave Soliton in Nonlinear Optical Lattice

    Full text link
    Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with low-dimensional (1D) conservative plus dissipative nonlinear optical lattices are investigated. In the case of focusing media (with attractive atomic systems) the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one dimension and one dimensional nonlinear optical lattice in other direction, the stable soliton can exist. This prediction of variational approach is confirmed by the full numerical simulation of 2D Gross-Pitaevskii equation.Comment: 9 pages, 8 figure

    Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures

    Get PDF
    Generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered, first a variation of the fermion-bosons scattering length, and secondly the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited.Comment: Final published versio

    Adiabatic Compression of Soliton Matter Waves

    Full text link
    The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.

    Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    Full text link
    The modulational instability and discrete matter wave solitons in dipolar BEC, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In a marked contrast with the usual DNLS behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including the stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and inter-site localized modes are analyzed. On-site and inter-site surface localized modes are studied finding that they do not exist when nonlocal interactions predominate with respect to local ones.Comment: 12 pages, 13 figure

    Stable two-dimensional dispersion-managed soliton

    Full text link
    The existence of a dispersion-managed soliton in two-dimensional nonlinear Schr\"odinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct PDE and ODE simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.

    Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length

    Full text link
    We consider, by means of the variational approximation (VA) and direct numerical simulations of the Gross-Pitaevskii (GP) equation, the dynamics of 2D and 3D condensates with a scattering length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct averaging of the GP equation,without using the VA. In the 2D case, both VA and direct simulations, as well as the averaging method, reveal the existence of stable self-confined condensates without an external trap, in agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the constant part of the scattering length is positive (but not too large). Thus a spatially uniform ac magnetic field, resonantly tuned to control the scattering length, may play the role of an effective trap confining the condensate, and sometimes causing its collapse.Comment: 7 figure

    Modulational instability in cigar shaped Bose-Einstein condensates in optical lattices

    Full text link
    A self consistent theory of a cigar shaped Bose-Einstein condensate (BEC) periodically modulated by a laser beam is presented. We show, both theoretically and numerically, that modulational instability/stability is the mechanism by which wavefunctions of soliton type can be generated in cigar shaped BEC subject to a 1D optical lattice. The theory explains why bright solitons can exist in BEC with positive scattering length and why condensate with negative scattering length can be stable and give rise to dark solitary pulses.Comment: Submitted, 4 pages, 3 figures. Revised versio

    Solitons in Tonks-Girardeau gas with dipolar interactions

    Full text link
    The existence of bright solitons in the model of the Tonks-Girardeau (TG) gas with dipole-dipole (DD) interactions is reported. The governing equation is taken as the quintic nonlinear Schr\"{o}dinger equation (NLSE) with the nonlocal cubic term accounting for the DD attraction. In different regions of the parameter space (the dipole moment and atom number), matter-wave solitons feature flat-top or compacton-like shapes. For the flat-top states, the NLSE with the local cubic-quintic (CQ) nonlinearity is shown to be a good approximation. Specific dynamical effects are studied assuming that the strength of the DD interactions is ramped up or drops to zero. Generation of dark-soliton pairs in the gas shrinking under the action of the intensifying DD attraction is observed. Dark solitons exhibit the particle-like collision behavior. Peculiarities of dipole solitons in the TG gas are highlighted by comparison with the NLSE including the local CQ terms. Collisions between the solitons are studied too. In many cases, the collisions result in merger of the solitons into a breather, due to strong attraction between them.Comment: 15 pages, 8 figures, accepted by J. Phys. B: At. Mol. Opt. Phy

    The Efimov's effect for a model of a three particle discrete Shr\"odinger operator

    Full text link
    In the paper we study existance of infinitly many egenvalues for a model of a three particle discrete Shr\"odinger operator.Comment: Russia
    • …
    corecore