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The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The
generation of waves is achieved by periodically changing a parameter of the system in time. Two types of
modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson
scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions
where they can be excited.
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I. INTRODUCTION

Faraday waves (FWs) are spatially periodic patterns that
can be generated in a system with a periodic variation in
time of the system parameters. Faraday waves were initially
observed by Faraday for a vessel with a liquid oscillating in
the vertical direction [1]. Such a type of structure can exist
in nonlinear optical systems [2–6] where variations along the
longitudinal direction of the Kerr nonlinearity can be achieved
by the periodic variation of the effective cross-sectional area of
the nonlinear optical fiber. Recently parametric resonances in
modulational instability of electromagnetic waves in photonic
crystal fibers with a periodically varying diameter have been
experimentally observed in Ref. [7]. Other examples are the
patterns in the Bose-Einstein condensates (BECs) with an
atomic scattering length or a radial confinement (a transverse
frequency of the trap) periodically varying in time. For BECs
the cases of one- [8–11] and two-component condensates
[12,13], as well as dipolar condensates [14,15], have been
investigated. Related parametric amplifications in an optical
lattice have been studied in Ref. [16] and by capillary waves
on the interface between two immiscible BECs in Ref. [17].
In BECs FWs were first predicted in two dimensions with a
periodically varying transverse frequency of the trap [8] and
later observed in an experiment with a repulsive interacting
BEC, loaded into an elongated trap [18]. The existence of
FWs also in elongated fermionic clouds was discussed in
Ref. [19] and Faraday patterns in a superfluid Fermi gas were
investigated in Ref. [20].

Periodic modulation of the coefficients of nonlinearity in
the relevant mean-field equations can be achieved by variation
of the atomic scattering length by the Feshbach resonance
technics [21–24] or by time modulation of the transverse
frequency of the trap [8]. In the former case it is necessary
to vary the external magnetic field in time near the resonant
value. The presence of a deep optical lattice has been shown
to suppress the Faraday pattern generation [25].

The purpose of this work is to investigate the mechanism of
Faraday wave generation in elongated superfluid Fermi-Bose
(FB) mixtures. Such FB mixtures have many interesting
properties in comparison with the pure bosonic case [26] and
Faraday waves can be a useful tool to measure the nonlinear
properties and in particular instabilities in these systems.

Two types of atomic scattering lengths are relevant in this
system: the fermion-boson scattering length a12 describing the
scattering between the two components and the boson-boson
scattering length ab. Variation in time of these lengths by
an external magnetic field opens the possibility of generating
Faraday waves in the mixture. The actions of these variations
are different though. In the latter bosonic case we parametri-
cally excite the BEC subsystem, while in the former case we
excite the bosonic and fermionic subsystems simultaneously.
Thus we can expect different responses of temporal parametric
perturbation with various types of pattern formation.

Strongly repulsive interacting bosons in one dimension,
so-called Tonks-Girardeau gases [27], have the same long-
wavelength dynamics as noninteracting fermions [28]. Hence
the results presented here can also be realized in systems with
two coupled bosonic species with strong and weak intraspecies
interactions.

II. MODEL

The model of a quasi-one-dimensional superfluid FB
mixture is described by the following system of coupled
equations for the complex functions ψ1,2(x,t) [26]:

iψ1,t = −ψ1,xx + gb|ψ1|2ψ1 + g12|ψ2|2ψ1,
(1)

iψ2,t = −ψ2,xx + κπ2|ψ2|4ψ2 + g12|ψ1|2ψ2,

with components 1 (2) representing bosons (fermions). In
general, Bose and Fermi subsystems are described by the
Lieb-Liniger and Gaudin-Yang theories, respectively. Here we
are interested in weak Bose-Bose interactions (we consider
small positive gb) and attractive Fermi-Fermi interactions and
the superfluid Fermi-Bose system is described by the nonlinear
Schrödinger-like equation (1) [29–33]. In the BCS weak
attractive coupling limit the fermionic subsystem coefficient is
κ = 1/4, while in the molecular unitarity limit it is κ = 1/16
[26]. Finally, for the bosonic Tonks-Girardeau limit [28] with
the components 1 (2) being a weakly (strongly) repulsive
bosonic species we have κ = 1. Furthermore, gb = 2h̄abω⊥
is the one-dimensional coefficient of mean-field nonlinearity
for bosons, where ab is the scattering length and ω⊥ is the
perpendicular frequency of the trap. Similarly, g12 is the
interspecies interaction coefficient [26]. The system is written
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in dimensionless form using the variables

l =
√

h̄

mbω⊥
, ψ =

√
l�,

t = τω⊥, x = X

l
, gj = 2mbl

h̄2 Gj,

where Gj (j = b,12) is the coefficient of the mean-field
nonlinearity. We also implicitly assume that mb = mf in
Eq. (1) since such a condition can be realized approximately
in the 7Li-6Li and 41K-40K mixtures.

The mean-field nonlinearities will be varied in time as

g12(t) = g
(0)
12 [1 + α12 cos(	12t)],

(2)
gb(t) = g

(0)
b [1 + αb cos(	bt)].

Such variation can be achieved, for example, by using
Feshbach resonance techniques, namely, by variation of an
external magnetic field near a resonant value [21]. This leads
to the temporal variation of interspecies and intraspecies
scattering lengths and the respective mean-field coefficients.
The system (1) has plane-wave solutions

ψ1,2 = A1,2 exp(iφ1,2), A1,2 ∈ R+, (3)

where

φ1 = −gbA
2
1t + g12A

2
2t,

(4)
φ2 = −κπ2A4

2t + g12A
2
1t.

III. MODULATIONAL INSTABILITY OF PLANE WAVES

Let us now study the modulational instability (MI) of
nonlinear plane waves using the linear stability analysis [5].
We will look for solutions of the form

ψ1,2 = [A1,2 + δψ1,2(x,t)]eiφ1,2(t), |δψ1,2| � A1,2. (5)

Substituting these expressions into the system (1) and lineariz-
ing, we get the following system for δψ1,2:

iδψ1,t − gb(t)A2
1(δψ1 + δψ∗

1 ) + δψ1,xx

+ g12(t)A1A2(δψ2 + δψ∗
2 ) = 0,

(6)
iδψ2,t − 2κπ2A4

2(δψ2 + δψ∗
2 ) + δψ2,xx

+ g12(t)A1A2(δψ1 + δψ∗
1 ) = 0.

With δψ1 = u + iv and δψ2 = p + iq, we now use the
Fourier transforms U (k,t) = ∫

dx u(x,t)e−ikx = F{u(x,t)}
and V (k,t) = F{v(x,t)}. Differentiation with respect to time
of the remaining differential equations containing Vt and Qt

gives the system

V (k,t)t t + ω2
1(t)V (k,t) = ε(t)Q(k,t),

Q(k,t)t t + ω2
2Q(k,t) = ε(t)V (k,t),

U (k,t) = k2
∫

dt V, (7)

P (k,t) = k2
∫

dt Q,

where

ω2
1(t) = k2[k2 + 2gb(t)A2

1],

ω2
2 = k2(k2 + 4κπ2A4

2

)
, (8)

ε(t) = 2g12(t)k2A1A2.

The terms gb(t) and g12(t) are defined in Eqs. (2). In the
following we use the notation ω1 ≡ ω1(t = π/2	b) and ε0 ≡
ε(t = π/2	12). Hence, by solving the coupled equations for V

and Q for given k, all the components of δψ1,2 can in principle
be obtained by the inverse Fourier transform.

We consider the case of a FB mixture with constant system
parameters. Looking for solutions V and Q with a time
dependence of the form exp(±i	t), we obtain the dispersion
relation of the modulations

	2
1,2 = ω2

1 + ω2
2

2
±

√(
ω2

2 − ω2
1

)2

4
+ ε2

0 (9)

such that in the weak-coupling limit ε0 � ω2
2 − ω2

1,

	2
1 → ω2

1 − ε2
0

ω2
2 − ω2

1

, 	2
2 → ω2

2 + ε2
0

ω2
2 − ω2

1

, (10)

and in the limit of approaching frequencies ω2 → ω1,

	2
1 → ω2

1 − ε0, 	2
2 → ω2

2 + ε0. (11)

The stability condition (for any k) is obtained by requiring
	1,2 in Eq. (9) to be real, i.e.,

g
(0)
12 <

√
2π2κg

(0)
b A2

2. (12)

In the opposite case we have MI in the FB mixture [26].

IV. ANALYSIS OF PARAMETRICALLY EXCITED
INSTABILITIES

In the following we will consider the linear ordinary
differential equation (ODE) model (7) for different cases
of periodic modulations (2). When only the interspecies
interaction parameter g12 is modulated, we obtain a system
of two coupled oscillators with a coupling parameter varying
in time

Vtt + ω2
1V = ε(t)Q,

(13)
Qtt + ω2

2Q = ε(t)V,

where ε(t) = ε0 + α12ε0 cos(	12t) according to Eq. (8). When
only the intraspecies parameter gb is modulated, we get a
system of one Mathieu equation coupled to an oscillator
equation

Vtt + ω2
1(t)V = ε0Q,

(14)
Qtt + ω2

2Q = ε0V,

where ω2
1(t) = ω2

1 + αbω
2
1 cos(	bt).

A. Driven coupling between fermions and bosons

We consider the case of a stable FB mixture according to
Eq. (12) such that the MI is absent [26]. Hence any instability
is only due to parametric resonance. To analyze resonances
of the system (13) we use the multiscale method [34,35]. The
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derivations are collected in the Appendix, where we conclude
that parametric resonances may occur at the two frequencies
of excitations

	12,− = ω2 − ω1, 	12,+ = ω2 + ω1. (15)

As the detailed analysis shows, the excitations for 	12,− are
stable and do not lead to FWs. Inserting the expressions from
Eq. (8) into the second case of Eq. (15), with the use of a
simplified notation a = 2g

(0)
b A2

1 and b = 4π2κA4
2, we get the

resonance frequencies in terms of the wave numbers of the
corresponding Faraday waves

	12,+ = k(
√

k2 + a +
√

k2 + b). (16)

We invert Eq. (16) such that the wave numbers are

k2 =
a + b − 2

√
ab + 	2

12,+
(b − a)2 − 4	2

12,+
	2

12,+. (17)

The spatial wavelength L = 2π/k of the FW obtained from
Eq. (17) is

L(	,κ) = 2π

	12,+

√√√√ (b − a)2 − 4	2
12,+

a + b − 2
√

ab + 	2
12,+

. (18)

According to the Appendix, the region of instability for 	12,+
from Eq. (15) is restricted by the lines

ω̄2
1 	 ω2

1 ± ε0α12

2

√
ω1

ω2
, ω̄2

2 	 ω2
2 ± ε0α12

2

√
ω2

ω1
, (19)

while the exponential growth rate of the amplitudes is restricted
by the maximal gain

pm 	 ε0α12

4
√

ω1ω2
. (20)

A mathematically particularly simple case of the driven
interspecies modulation is when ω1 	 ω2. Introducing the
symmetric ξ+(t) = (V + Q)/2 and antisymmetric ξ−(t) =
(V − Q)/2 combinations in the ODE (13), we can find that
a set of parametric resonances at 	12 	 2	1,2	2 exist. This
follows directly from the fact that we then have two uncoupled
Mathieu equations [36] for the variables ξ+ and ξ−. Note that
resonances at low (2	1) and high (2	2) frequencies occur [see
Eq. (11)].

Numerical solutions of the ODE model (13) are presented
in Fig. 1 for parameters corresponding to the BCS regime.
It is found that amplitudes increase exponentially in time
and the behavior agrees well with the theoretical predictions.
Using the same parameters, we perform numerical simulations
of the full partial differential equation (PDE) model (1)
describing the Fermi-Bose mixture (see Fig. 2). Results shows
quantitative agreement for the PDE and ODE models up to
t ∼ 10 [see the inset of Fig. 1(a)]. From Fig. 3, where data
for the spatial wavelength L of the FW versus the modulation
frequency are plotted [Fig. 3(a)], it is seen how the wavelength
decreases with increasing frequency. While results for the wave
number k = 1 have been presented in Figs. 1 and 2, we have
numerically confirmed the results for k = 2,3,4 also with full
PDE simulations [squares in Fig. 3(a)]. In Fig. 3(b) we show
how L depends on the fermionic subsystem parameter κ within
the analytic model (18).

 (a)

FIG. 1. (Color online) Solutions to the ODE model of Eq. (13).
Blue dashed curves are for V (bosons) and red thin curves are for
Q (fermions). (a) Amplitudes growing exponentially in time. The
inset shows a comparison with the corresponding PDE data (x = 0
slices of Fig. 2) for selected times. The PDE data are shown with
black squares for bosons and dots for fermions. (b) Spectrum for the
modulation frequency 	12,+ = 65.5 for the wave number k = 1 (see
the text) and with 	1 and 	2 from Eq. (9), which agrees well with
Eq. (10) in this regime. The initial conditions are V/A1 = Q/A2 =
10−4 (Vt = Qt = 0) and the parameters are α12 = 0.25, A1 = √

300,
A2 = √

20, g
(0)
b = 0.01, g

(0)
12 = 0.8, and κ = 1/4.

The results of Eq. (19) in practice here mean that with the
parameter values of Fig. 1, the modulation frequency can be
on the order of 1% larger (or smaller) when exciting the FW.
This is confirmed numerically with Eqs. (1) and (13); we have
also observed a weak dependence on α12 for the maximum
of the numerical 	12 resonance region (not shown). Hence,
by optimizing 	12, a larger amplitude can be obtained (i.e.,
curve A in Fig. 6 can be moved further towards the line of the
theoretical gain).

B. Driven nonlinearity in the bosonic subsystem

The case where only the intraspecies (boson-boson) inter-
action parameter is modulated is described by the system (14).
Applying again the multiscale approach (see the Appendix),
we have concluded that resonances occur at 	b = 2ω1 under

FIG. 2. (Color online) Solutions to the full PDE model of Eq. (1)
for driven coupling between fermions and bosons with the modula-
tion frequency 	12,+ = 65.5 (k = 1). We plot the oscillating parts
(|ψj | − Aj )/Aj for (a) j = 1 (bosons) and (b) j = 2 (fermions). The
initial conditions are ψj = Aj [1 + 10−4 exp(ikx)] and the boundary
conditions in x are periodic. The parameters are the same as in Fig. 1.
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0

1

2

3
 (b)

MI
12,+

=135

a=b

Larger A
2

BCSUnitarityL/
2

FIG. 3. (Color online) Spatial wavelengths of the Faraday pat-
terns. (a) We use the same parameters as for Fig. 1 with the left dot
for k = 1, corresponding to 	12,+ = 65.5, and squares for k = 2,3,4.
(b) The case corresponding to Fig. 1 (right dot) is the second (blue)
curve from the bottom. Here, as well as for the lowest (red) curve
[left square in (a)] where 	12,+ = 135 (k = 2), the condition (12)
is not fulfilled in the entire domain, hence MI is possible in the left
part (dashed lines). The condition (12) for not having MI can be
satisfied in the entire κ range, e.g., by choosing A2 = 2

√
20 larger

[top (green) curve]. Finally, the special case of a = b (i.e., with
g

(0)
b ∝ κ) is illustrated with the third (black) curve, where the left dot

corresponds to the case illustrated in Fig. 4.

the additional condition that ω1 	 ω2. Hence, from Eq. (8)
with ω1 = ω2 we now obtain

	b = 2k
√

k2 + a, k2 = a

2

(√
1 + 	2

b/a
2 − 1

)
. (21)

The corresponding instability region is bounded by the lines

ω̄2
1 = ω2

1 ± ε0αb

2
, ω̄2 = ω̄1 (22)

and the maximal gain is now equal to

pm 	 ε0αb

4ω1
. (23)

 (a)

FIG. 4. (Color online) Solutions to the ODE model of Eq. (14).
(a) Amplitudes growing exponentially in time. The inset shows a
comparison with the corresponding PDE data (x = 0 slices of Fig. 5
for selected times): black squares are for bosons and dots for fermions.
(b) Spectrum for the modulation frequency 	b = 63.3 (k = 1) and
with 	1 and 	2 agreeing well with Eq. (11) in this regime. The initial
conditions are the same as in Fig. 1; the parameters here are αb = 0.25,
A1 = √

5000, A2 = √
20.2, g

(0)
b = 0.1, g

(0)
12 = 0.8, and κ = 1/16.

FIG. 5. (Color online) Solutions to the full PDE model of Eq.
(1) for driven nonlinearity for bosons with the modulation frequency
	b = 63.3 (k = 1). The initial and boundary conditions are the same
as in Fig. 2; the parameters are the same as in Fig. 4.

Numerical solutions of the ODE model (14) with exponen-
tially growing amplitudes are presented in Fig. 4 for parameters
corresponding to the molecular unitarity limit. In the spectrum
we can see peaks corresponding to the combination of two
excited frequencies for both components. These predictions
are again well confirmed by PDE simulations (Fig. 5) of the
system (1) with driven nonlinearity of bosons [see the inset
of Fig. 4(a)]. Although the bosonic component ψ1 is lagging
behind (i.e., lower amplitude in Figs. 4 and 5) it is growing
exponentially with the same rate as ψ2.

According to Eq. (22), the modulation frequency can be on
the order of 3% larger or smaller (for the parameters of Fig. 4)
when exciting the FW. This has been confirmed numerically
with Eqs. (1) and (14), although the maximum of the numerical
resonance region (not shown) was found for slightly lower
values of 	b than the theoretical estimate. Hence this means
that curve B in Fig. 6 can be made steeper by using slightly
lower values for 	b.

Finally, we can analyze also this case in terms of the
symmetric (or antisymmetric) combinations ξ±. From Eq. (14)
we then have the driven coupled Mathieu-like system

ξ±,t t + 	2
1,2ξ± + αbω

2
1 cos(	bt)[ξ+ + ξ−]/2 = 0, (24)

and in agreement with our findings above, the literature here
states that 	b 	 2	1, 2	2, and 	1 + 	2 [12,37].

0 0.5 1 1.5 2
0

2

4

6

 A

 B

 C

αj

p

FIG. 6. (Color online) Exponential growth rates p of the slowly
varying amplitudes [envelope of V ∼ Q ∼ exp(pt) of Eq. (7)]. Solid
curves connect numerical data points (circles) for the three cases: A
(Fermi-Bose modulation αj = α12), B (Bose-Bose modulation αj =
αb), and C (super-resonance αj = αb = −α12). Dashed lines shows
theoretical predictions according to Eq. (20) for case A and Eq. (23)
for case B. In case A, 	12 = 65.5, while in cases B (C) we use
	b = 63.3 (	b = 	12), respectively.
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C. Driven super-resonance

In the case of super-resonance we refer to the situation
where both Bose-Bose time-modulated interactions [αb �= 0 in
Eq. (2)] and Fermi-Bose time-modulated interactions (α12 �=
0) are simultaneously present in Eqs. (1) and (7). Comparing
Eq. (16) with Eq. (21), we note that when a = b, we have
	12,+ = 	b. Now we change a sign in Eq. (2) such that for
α12 = −αb, for example, the two types of modulations initiate
opposite phases for the two components and an increased
growth rate of the Faraday waves is observed, as compared
to the two distinct cases discussed before. To demonstrate the
super-resonance numerically we used the same parameters as
for Fig. 4 with α12 = −0.25. This result can also be understood
from a consideration of the system (7) for symmetric and
antisymmetric combinations ξ+ and ξ−. For example, in the
case when α12 = −αb/2 and 	12 = 	b, we simply have the
driven coupled Mathieu-like system

ξ±,t t +
[
	2

1,2 + 	2
2,1

αb

2
cos(	bt)

]
ξ±

= −ω2
1
αb

2
cos(	bt)ξ∓. (25)

V. GROWTH OF THE FARADAY WAVES

In general we note that in the regime where the linear
stability analysis based on Eqs. (5) and (6) is valid we
have quantitative agreement between the full model (1) (see
Figs. 2 and 5) and the ODE models (13) and (14) (Figs. 1
and 4, respectively). We found an exponential growth in time
of the oscillating amplitudes in this regime. For larger times
the nonlinearities of the full model (1) cause a saturation of
the amplitudes, while the results of the linear stability analysis
become unphysical.

In Fig. 6 we show results of the exponential growth rate
for Secs. IV A– IV C together with the theoretical results for
the maximal gain derived in the Appendix. We show results
only for the wave number k = 1; however, we note that the
theoretical estimates pm(k) increase with k and asymptotically
approach the constant limk→∞ pm(k) = αjg

(0)
12 A1A2/2.

VI. REALISTIC PARAMETERS

The Faraday waves can be observed, for example, in
mixtures such as 41K-40K and 87Rb-40K [38]. Here we estimate
effective values for the first system above since the two atomic
masses are almost equal then. The fermion-boson scattering
length a12 can be tuned by using the Feshbach resonance
techniques according to [24]

a12 = abg

(
1 + �B

B(t) − B0

)
,

where �B 	 53 G, B0 	 541.5 G, and abg 	 65a0 (abg is the
background atomic scattering length and a0 the Bohr radius).
By variations in time of the external magnetic field B(t) around
B0, we can tune the scattering length a12. For example, we
take a12 = 250a0 and ab = 85a0 and assume a length scale in
the trap of l = 2.3 μm. If we then consider the BCS regime
(κ = 1/4) and take the numbers of bosons and fermions as
Nb = 2 × 105 and Nf = 2 × 103, with the transverse trap

frequency being ω⊥ = 1.9 kHz, we find that for modulations
with the frequency 	12 	 32ω⊥ the spatial wavelength of
the Faraday pattern is L ≈ 31 μm. Correspondingly, in the
molecular unitarity limit (κ = 1/16) the spatial wavelength is
L ≈ 16 μm.

VII. CONCLUSION

We have illustrated the possibility of Faraday patterns
for Fermi-Bose mixtures, i.e., with atomic bosons coupled
to fermions, in both the fermionic BCS regime and the
molecular unitarity limit. In particular we have investigated
quasi-one-dimensional superfluid FB mixtures with periodic
variations in time of the Fermi-Bose or Bose-Bose interactions.
We find Faraday patterns for both cases and study their
properties depending on the parameters for modulations and
the system settings. Combining the two types of modulations
can result in even larger amplitudes. We also conjecture that
Faraday waves can be observed in an atomic BEC coupled to
a Tonks-Girardeau gas.

A natural continuation of this work is to investigate Faraday
patterns in FB mixtures for the two- and three-dimensional
cases. This problem deserves a separate investigation though,
since the corresponding coupled nonlinear Schrödinger-like
equations are different.
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APPENDIX

To understand the resonances in the coupled system (13),
we can use the multiscale analysis [35]. Following this
approach, we look for solutions where

ω2
1 = ω2

01 + ε0a1 + ε2
0a2 + · · · ,

(A1)
ω2

2 = ω2
02 + ε0b1 + ε2

0b2 + · · ·
and correspondingly for the functions V and Q,

V = V0(t,T ) + ε0V1(t,T ) + ε2
0V2(t,T ) + · · · ,

(A2)
Q = Q0(t,T ) + ε0Q1(t,T ) + ε2

0Q2(t,T ) + · · · ,
where T = ε0t is a slow time. Taking the terms of each order in
ε0, we obtain from Eq. (13) the following system of equations
up to the linear order in ε0:

V0,t t + ω2
01V0 = 0, Q0,t t + ω2

02Q0 = 0,

V1,t t + ω2
01V1 = −2V0,tT − a1V0 + [1 + α12 cos(	t)]Q0,

Q1,t t + ω2
02Q1 = −2Q0,tT − b1Q0 + [1 + α12 cos(	t)]V0.

(A3)

The solutions of the first two uncoupled equations of Eqs. (A3)
can be written in the form

V0(t,T ) = A0(T ) cos(ω01t) + B0(T ) sin(ω01t),
(A4)

Q0(t,T ) = C0(T ) cos(ω02t) + D0(T ) sin(ω02t).
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We require the absence of the resonant terms on the right-
hand sides of the third and fourth of Eqs. (A3). With the ansatz
	 = ω2 ± ω1 and after averaging in the fast time t , we obtain
a system of equations for the envelope functions A0, B0, C0,
and D0 of Eqs. (A4),

2ω01A0,T − a1B0 ∓ α12

2
D0 = 0,

−2ω01B0,T − a1A0 + α12

2
C0 = 0,

(A5)
2ω02C0,T − b1D0 ∓ α12

2
B0 = 0,

−2ω02D0,T − b1C0 + α12

2
A0 = 0.

Looking for solutions of the form A0,B0,C0,D0 ∼ exp(pt),
i.e., for example, with A0,T ∼ pA0/ε0, we find from
Eqs. (A5) the characteristic equation p4 + Mp2 + N = 0 with
coefficients

M = 2b2
1ω

2
01 + 2a2

1ω
2
02 ∓ α2

12ω01ω02

8ω2
01ω

2
02

,

(A6)

N =
(
4a1b1 − α2

12

)2

256ω2
01ω

2
02

.

Remember that the sign ∓ in M of Eqs. (A6) is for 	12,± =
ω2 ± ω1, respectively, and note also that N � 0. Hence, from
p2 = −M/2 ±

√
M2/4 − N it is seen that only 	12,+ can

correspond to a positive real p, i.e., a FW with an exponentially
growing amplitude, while excitations for 	12,− are stable. The
maximal exponential growth rate of the FW for 	12,+ is found
from Eqs. (A6) with M2 ∼ 4N to be

pm ∼
√

−M

2
	 ε0α12

4
√

ω1ω2
, (A7)

which is referred to as the theoretical gain in the main
text.

For experiments on FW it is important to know also the
width of the instability region. The boundaries of the unstable
region can be found from inspection of Eqs. (A6), which
shows that at the boundary we have from N that b1 = α2

12/4a1

and correspondingly from M we then have a1 = ±α12
2

√
ω1/ω2

such that the frequencies to linear order in ε0 obtained from

Eqs. (A1) are

ω2
1 = ω2

01 ± ε0
α12

2

√
ω1

ω2
+ · · · ,

(A8)

ω2
2 = ω2

02 ± ε0
α12

2

√
ω2

ω1
+ · · · .

Analogously the system (14) for the case of driven boson-
boson interactions can be investigated and the results are
reported in Eqs. (21)–(23). Below we sketch the derivation
also for this case.

For ε0 = 0 the first of Eqs. (14) is a Mathieu equation

Vtt + [
ω2

1 + αbω
2
1 cos(	t)

]
V = 0, (A9)

with solutions V = A Ce(a,q,t) + B Se(a,q,t), where a =
4ω2

1/	2 and q = −2αbω
2
1/	2 in the standard notation of the

cosine and sine Mathieu functions [36]. We now look again
for solutions to Eqs. (14) of the form of Eqs. (A1) and (A2).
In the case of αb � 1 one can use the expansions Ce(a,q,t) ∼
cos(ω01t) + O(q) and Se(a,q,t) ∼ sin(ω01t) + O(q) in
Eq. (A9). In particular we then have that the system in the
first two of Eqs. (A3), and hence Eqs. (A4), applies also here
and we have in the linear order

V1,t t + ω2
01V1 = −2V0,tT − a1V0 − αb cos(	t)V0 + ε0Q0,

Q1,t t + ω2
02Q1 = −2Q0,tT − b1Q0 + ε0V0. (A10)

Hence A0 and B0 are not coupled to C0 and D0 in the lowest
order in ε0 such that it is enough to consider the two envelope
functions A0 and B0 in the remainder. We then require the
absence of the resonant terms on the right-hand side of the
first of Eqs. (A10). With the ansatz 	 = 2ω1 and ω2 = ω1

(b1 = a1), we obtain a system of equations for A0 (with A0,T ∼
pA0/ε0) and B0 such that the characteristic equations give

p = ± ε0

2ω1

√
α2

b

4
− a2

1 . (A11)

Hence the theoretical gain for a1 ∼ 0 is

pm = ε0αb

4ω1
. (A12)

Since p becomes imaginary when a2
1 > α2

b/4, we have
the boundary a1 = b1 = ±αb/2 and hence ω2

1 = ω2
2 	 ω2

01 ±
ε0

αb

2 .

[1] M. Faraday, Philos. Trans. R. Soc. London 121, 319
(1831).

[2] F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt.
Lett. 18, 1499 (1993).

[3] F. Kh. Abdullaev, Pis’ma Zh. Tekh. Fiz. 20, 25 (1994).
[4] F. Kh. Abdullaev, S. A. Darmanyan, S. Bishoff, and M. P.

Sørensen, J. Opt. Soc. Am. B 14, 27 (1997).
[5] F. Kh. Abdullaev, S. A. Darmanyan, and J. Garnier, Prog. Opt.

44, 306 (2002).
[6] A. Armaroli and F. Biancalana, Opt. Express 20, 25096 (2012).
[7] M. Droques et al., CLEO: Science and Innovations (OSA,

Washington, DC, 2012), p. CTh4B.7.

[8] K. Staliunas, S. Longhi, and G. J. de Valcárcel, Phys. Rev. Lett.
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011601 (2004).

[10] M. Modugno, C. Tozzo, and F. Dalfovo, Phys. Rev. A 74,
061601(R) (2006).

[11] A. I. Nicolin, R. Carretero-Gonzalez, and P. G. Kevrekidis, Phys.
Rev. A 76, 063609 (2007); A. I. Nicolin, Phys. Rev. E 84, 056202
(2011); Rom. Rep. Phys. 63, 1329 (2011).

[12] A. B. Bhattacherjee, Phys. Scr. 78, 045009 (2008).
[13] A. Balaz and A. I. Nicolin, Phys. Rev. A 85, 023613 (2012).
[14] R. Nath and L. Santos, Phys. Rev. A 81, 033626 (2010).

023616-6

http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1364/JOSAB.14.000027
http://dx.doi.org/10.1364/OE.20.025096
http://dx.doi.org/10.1103/PhysRevLett.89.210406
http://dx.doi.org/10.1103/PhysRevLett.89.210406
http://dx.doi.org/10.1103/PhysRevA.70.011601
http://dx.doi.org/10.1103/PhysRevA.70.011601
http://dx.doi.org/10.1103/PhysRevA.74.061601
http://dx.doi.org/10.1103/PhysRevA.74.061601
http://dx.doi.org/10.1103/PhysRevA.76.063609
http://dx.doi.org/10.1103/PhysRevA.76.063609
http://dx.doi.org/10.1103/PhysRevE.84.056202
http://dx.doi.org/10.1103/PhysRevE.84.056202
http://dx.doi.org/10.1088/0031-8949/78/04/045009
http://dx.doi.org/10.1103/PhysRevA.85.023613
http://dx.doi.org/10.1103/PhysRevA.81.033626


FARADAY WAVES IN QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 87, 023616 (2013)

[15] K. Lakomy, R. Nath, and L. Santos, Phys. Rev. A 86, 023620
(2012).
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