164 research outputs found

    Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response

    Get PDF
    Toll-like receptor (TLR) agonists induce metabolic reprogramming, which is required for immune activation. We have investigated mechanisms that regulate metabolic adaptation upon TLR-stimulation in human blood DC subsets, CD1c+ myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). We show that TLR-stimulation changes expression of genes regulating oxidative phosphorylation (OXPHOS) and glutamine metabolism in pDC. TLR-stimulation increases mitochondrial content and intracellular glutamine in an autophagy-dependent manner in pDC. TLR-induced glutaminolysis fuels OXPHOS in pDCs. Notably, inhibition of glutaminolysis and OXPHOS prevents pDC activation. Conversely, TLR-stimulation reduces mitochondrial content, OXPHOS activity and induces glycolysis in CD1c+ mDC. Inhibition of mitochondrial fragmentation or promotion of mitochondrial fusion impairs TLR-stimulation induced glycolysis and activation of CD1c+ mDCs. TLR-stimulation triggers BNIP3-dependent mitophagy, which regulates transcriptional activity of AMPKα1. BNIP3-dependent mitophagy is required for induction of glycolysis and activation of CD1c+ mDCs. Our findings reveal that TLR stimulation differentially regulates mitochondrial dynamics in distinct human DC subsets, which contributes to their activation

    Attacking Tumors From All Sides: Personalized Multiplex Vaccines to Tackle Intratumor Heterogeneity

    Get PDF
    Tumor vaccines are an important asset in the field of cancer immunotherapy. Whether prophylactic or therapeutic, these vaccines aim to enhance the T cell-mediated anti-tumor immune response that is orchestrated by dendritic cells. Although promising preclinical and early-stage clinical results have been obtained, large-scale clinical implementation of cancer vaccination is stagnating due to poor clinical response. The challenges of clinical efficacy of tumor vaccines can be mainly attributed to tumor induced immunosuppression and poor immunogenicity of the chosen tumor antigens. Recently, intratumor heterogeneity and the relation with tumor-specific neoantigen clonality were put in the equation.In this perspective we provide an overview of recent studies showing how personalized tumor vaccines containing multiple neoantigens can broaden and enhance the anti-tumor immune response. Furthermore, we summarize advances in the understanding of the intratumor mutational landscape containing different tumor cell subclones and the temporal and spatial diversity of neoantigen presentation and burden, and the relation between these factors with respect to tumor immunogenicity. Together, the presented knowledge calls for the investment in the characterization of neoantigens in the context of intratumor heterogeneity to improve clinical efficacy of personalized tumor vaccines

    Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after FcγRII-mediated uptake

    Get PDF
    Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons. Although human pDCs can induce T cell responses upon viral infection, it remains unclear if pDCs can present exogenous antigens. Here, we show that human pDCs exploit FcγRII (CD32) to internalize antigen–antibody complexes, resulting in the presentation of exogenous antigen to T cells. pDCs isolated from melanoma patients vaccinated with autologous monocyte-derived peptide- and keyhold limpet hemocyanin (KLH)–loaded dendritic cells, but not from nonvaccinated patients or patients that lack a humoral response against KLH, were able to stimulate KLH-specific T cell proliferation. Interestingly, we observed that internalization of KLH by pDCs depended on the presence of serum from vaccinated patients that developed an anti-KLH antibody response. Anti-CD32 antibodies inhibited antigen uptake and presentation, demonstrating that circulating anti-KLH antibodies binding to CD32 mediate KLH internalization. We conclude that CD32 is an antigen uptake receptor on pDCs and that antigen presentation by pDCs is of particular relevance when circulating antibodies are present. Antigen presentation by pDCs may thus modulate the strength and quality of the secondary phase of an immune response

    Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG

    Get PDF
    Cancer stem cells (CSCs) have been identified as the source of tumor growth and disease recurrence. Eradication of CSCs is thus essential to achieve durable responses, but CSCs are resistant to current anti-tumor therapies. Novel therapeutic approaches that specifically target CSCs will, therefore, be crucial to improve patient outcome. Immunotherapies, which boost the body’s own immune system to eliminate cancerous cells, could be an alternative approach to target CSCs. Vaccines of dendritic cells (DCs) loaded with tumor antigens can evoke highly specific anti-tumor T cell responses. Importantly, DC vaccination also promotes immunological memory formation, paving the way for long-term cancer control. Here, we propose a DC vaccination that specifically targets CSCs. DCs loaded with NANOG peptides, a protein required for maintaining stem cell properties, could evoke a potent anti-tumor immune response against CSCs. We hypothesize that the resulting immunological memory will also control newly formed CSCs, thereby preventing disease recurrence

    Preclinical exploration of combining plasmacytoid and myeloid dendritic cell vaccination with BRAF inhibition

    Get PDF
    Contains fulltext : 171226.pdf (publisher's version ) (Open Access)Background: Melanoma is the most lethal type of skin cancer and its incidence is progressively increasing. The introductions of immunotherapy and targeted therapies have tremendously improved the treatment of melanoma. Selective inhibition of BRAF by vemurafenib results in objective clinical responses in around 50 % of patients suffering from BRAFV600 mutated melanoma. However, drug resistance often results in hampering long-term tumor control. Alternatively, immunotherapy by vaccination with natural dendritic cells (nDCs) demonstrated long-term tumor control in a proportion of patients. We postulate that the rapid tumor debulking by vemurafenib can synergize the long-term tumor control of nDC vaccination to result in an effective treatment modality in a large proportion of patients. Here, we investigated the feasibility of this combination by analyzing the effect of vemurafenib on the functionality of nDCs. Methods: Plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were isolated from PBMCs obtained from buffy coats from healthy volunteers or vemurafenib-treated melanoma patients. Maturation of pDCs, mDCs and immature mono-cyte-derived DCs was induced by R848 in the presence or absence of vemurafenib and analyzed by FACS. Cytokine production and T cell proliferation induced by mature DCs were analyzed. Results: Vemurafenib inhibited maturation and cytokine production of highly purified nDCs of healthy volunteers resulting in diminished allogeneic T cell proliferation. This deleterious effect of vemurafenib on nDC functionality was absent when total PBMCs were exposed to vemurafenib. In patients receiving vemurafenib, nDC functionality and T cell allostimulatory capacity were unaffected. Conclusion: Although vemurafenib inhibited the functionality of purified nDC of healthy volunteers, this effect was not observed when nDCs were matured in the complete PBMC fraction. This might have been caused by increased vemurafenib uptake in absence of other cell types. In accordance, nDCs isolated from patients on active vemurafenib treatment showed no negative effects. In conclusion, our results pave the way for a combinatorial treatment strategy and, we propose that combining vemurafenib with nDC vaccination represent a powerful opportunity that deserves more investigation in the clinic

    Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death

    Get PDF
    Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD

    Harnessing RNA sequencing for global, unbiased evaluation of two new adjuvants for dendritic-cell immunotherapy

    Get PDF
    Effective stimulation of immune cells is crucial for the success of cancer immunotherapies. Current approaches to evaluate the efficiency of stimuli are mainly defined by known flow cytometry-based cell activation or cell maturation markers. This method however does not give a complete overview of the achieved activation state and may leave important side effects unnoticed. Here, we used an unbiased RNA sequencing (RNA-seq)-based approach to compare the capacity of four clinical-grade dendritic cell (DC) activation stimuli used to prepare DC-vaccines composed of various types of DC subsets; the already clinically applied GM-CSF and Frühsommer meningoencephalitis (FSME) prophylactic vaccine and the novel clinical grade adjuvants protamine-RNA complexes (pRNA) and CpG-P. We found that GM-CSF and pRNA had similar effects on their target cells, whereas pRNA and CpG-P induced stronger type I interferon (IFN) expression than FSME. In general, the pathways most affected by all stimuli were related to immune activity and cell migration. GMCSF stimulation, however, also induced a significant increase of genes related to nonsense-mediated decay, indicating a possible deleterious effect of this stimulus. Taken together, the two novel stimuli appear to be promising alternatives. Our study demonstrates how RNA-seq based investigation of changes in a large number of genes and gene groups can be exploited for fast and unbiased, global evaluation of clinicalgrade stimuli, as opposed to the general limited evaluation of a pre-specified set of genes, by which one might miss important biological effects that are detrimental for vaccine efficacy

    The association of mindful parenting with glycemic control and quality of life in adolescents with type 1 diabetes: results from Diabetes MILES-The Netherlands

    Get PDF
    The objective of this study was to examine associations between the mindful parenting style of parents of adolescents (aged 12-18) with type 1 diabetes mellitus (T1DM), and the glycaemic control and quality of life (QoL) of the adolescents. Chronic health conditions, such as T1DM, that require demanding treatment regimens, can negatively impact adolescents\u27 quality of life. Therefore, it is important to determine whether mindful parenting may have a positive impact in these adolescents. Age, sex and duration of T1DM were examined as potential moderators. Parents (N = 215) reported on their own mindful parenting style (IM-P-NL) and the adolescents\u27 glycaemic control. Parents and the adolescents with T1DM (N = 129) both reported on adolescents\u27 generic and diabetes-specific QoL (PedsQL™). The results showed that a more mindful parenting style was associated with more optimal hemoglobin A1c (HbA1c) values for boys. For girls, a more mindful parenting style was associated with not having been hospitalized for ketoacidosis. For both boys and girls, a more mindful parenting style was associated with better generic and diabetes-specific proxy-reported QoL. In conclusion, mindful parenting style may be a factor in helping adolescents manage their T1DM. Mindful parenting intervention studies for parents of adolescents with T1DM are needed to examine the effects on adolescents\u27 glycaemic control and their quality of life

    A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets

    Get PDF
    Dendritic cells (DCs) are central players of immune responses; they become activated upon infection or inflammation and migrate to lymph nodes, where they can initiate an antigen-specific immune response by activating naive T cells. Two major types of naturally occurring DCs circulate in peripheral blood, namely, myeloid and plasmacytoid DCs (pDCs). Myeloid DCs (mDCs) can be subdivided based on the expression of either CD1c or CD141. These human DC subsets differ in surface marker expression, Toll-like receptor (TLR) repertoire, and transcriptional profile, suggesting functional differences between them. Here, we directly compared the capacity of human blood mDCs and pDCs to activate and polarize CD4 + T cells. CD141 + mDCs show an overall more mature phenotype over CD1c + mDC and pDCs; they produce less IL-10 and more IL-12 than CD1c + mDCs. Despite these differences, all subsets can induce the production of IFN-in naive CD4 + T cells. CD1c + and CD141 + mDCs especially induce a strong T helper 1 profile. Importantly, naive CD4 + T cells are not polarized towards regulatory T cells by any subset. These findings further establish all three human blood DCs-despite their differences-as promising candidates for immunostimulatory effectors in cancer immunotherapy
    corecore