981 research outputs found

    Local damage in a 5-harness satin weave composite under static tension, part I: experimental analysis

    Get PDF
    International audienceThis paper presents an experimental damage analysis of a 5-harness satin weave carbon-PPS (PolyPhenylene Sulphide) composite under uni-axial static tensile load. In order to understand the local damage behaviour, tensile tests were performed and accompanied by acoustic emission (AE) and microscopic analysis of the composite specimen. These tests enable us to detect the damage initiation stress as well as the damage initiation location in the composite. Microscopic observation of the tested composite laminates allowed the characterization of the sequence of intra-yarn transverse damage (perpendicular to the load direction) occurrence at different locations in the laminate, starting from crack initiation to the final failure of the composite

    Using novel methodologies to examine the impact of artificial light at night on the cortisol stress response in dispersing Atlantic salmon (Salmo salarL.) fry

    Get PDF
    Artificial light at night (ALAN) is gaining recognition as having an important anthropogenic impact on the environment, yet the behavioural and physiological impacts of this stressor are largely unknown. This dearth of information is particularly true for freshwater ecosystems, which are already heavily impacted by anthropogenic pressures. Atlantic salmon (Salmo salar L.) is a species of conservation and economic importance whose ecology and behaviour is well studied, making it an ideal model species. Recent investigations have demonstrated that salmon show disrupted behaviour in response to artificial light; however, it is not yet clear which physiological processes are behind the observed behavioural modifications. Here, two novel non-invasive sampling methods were used to examine the cortisol stress response of dispersing salmon fry under different artificial lighting intensities. Fish egg and embryos were reared under differing ALAN intensities and individual measures of stress were subsequently taken from dispersing fry using static sampling, whereas population-level measures were achieved using deployed passive samplers. Dispersing fry exposed to experimental confinement showed elevated cortisol levels, indicating the capacity to mount a stress response at this early stage in ontogenesis. However, only one of the two methods for sampling cortisol used in this study indicated that ALAN may act as a stressor to dispersing salmon fry. As such, a cortisol-mediated response to light was not strongly supported. Furthermore, the efficacy of the two non-invasive methodologies used in this study is, subject to further validation, indicative of them proving useful in future ecological studies

    In-situ local strain measurement in textile composites with embedded optical fibre sensors

    Get PDF
    To understand the local strains inside a textile composite, numerical simulations are typically done on the scale of one repetitive unit cell of the weaving pattern. Periodic boundary conditions are applied to the edges of the unit cell and different load cases can then be applied to the unit cell of the textile composite. Most often, the periodic boundary conditions are applied on all faces of the unit cell, which implies the assumption that the material is repeating itself over an infinite distance in all three orthogonal directions. This assumption is more or less valid for the textile composite material in the midplane of thick laminates, where it is constrained by neighbouring material in all three directions. It is very difficult to validate such simulations, because local strain measurements inside a textile composite have rarely been done, and the interpretation is not straightforward. This paper shows the successful use of embedded optical fibre sensors to measure the local strains inside a satin weave carbon/PPS composite (typically used in aerospace applications). The length of the Bragg grating inside the optical fibre sensor has been chosen such that it is longer than the length of one unit cell of the satin weave architecture (7.4 mm). The read-outs of the optical fibre sensor give the minimum and maximum local strains that occur along the length of the Bragg grating

    Human skeletal muscle feed arteries: evidence of regulatory potential

    Get PDF
    Aim Recently, it has been recognized that human skeletal muscle feed arteries can be harvested during exploratory surgery for melanoma. This approach provides vessels for in vitro study from a wide spectrum of relatively healthy humans. Although, the regulatory role of skeletal muscle feed arteries in rodent models has been documented, whether such vessels in humans possess this functionality is unknown. Methods Therefore, skeletal muscle feed arteries (~950 μm OD) from 10 humans (48 ± 4, 27–64 years) were studied using pressure myography. Vessel function was assessed using potassium chloride (KCl), phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) concentration–response curves (CRCs) to characterize non-receptor and receptor-mediated vasoconstriction as well as endothelium-dependent and independent vasodilation respectively. To understand the physiological relevance of the diameter changes as a result of pharmacological stimulation, the estimated conductance ratio (CR) was calculated. Results Vessel function protocols revealed significant vasoconstriction in response to PE and KCl (35 ± 6; 43 ± 9%vasoconstriction, respectively) and significant vasodilation with ACh and SNP (85 ± 7; 121 ± 17% vasodilation, respectively). Both PE and KCl significantly reduced the CR (0.26 ± 0.05 and 0.23 ± 0.07, respectively), whereas ACh and SNP increased the CR (2.56 ± 0.10 and 5.32 ± 1.3, respectively). Conclusion These novel findings provide evidence that human skeletal muscle feed arteries are capable of generating significant diameter changes that would translate into significant changes in vascular conductance. Thus, human skeletal muscle feed arteries likely play a significant role in regulating vascular conductance and subsequently blood flow in vivo

    α1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH

    Get PDF
    What is the central question of this study? In human arteries involved in the regulation of muscle blood flow, there is a lack of data about whether acidosis alters vascular sensitivity to vasoactive agents, as well as altering endothelium dependent vasorelaxation. Little is known about the interaction of metabolites and vascular function in human skeletal muscle feed arteries. • What is the main finding and its importance? Increasing acidosis attenuated the response and sensitivity of the arteries to phenylephrine; this effect was selective to the receptor over smooth muscle. Acidosis did not alter endothelium dependent vasorelaxation. Impaired vasoconstriction coupled with intact vasorelaxation, promotes decreased vascular tone with exposure to acidosis, and may contribute to sympatholysis during exercise

    TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function

    Get PDF
    New Findings What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α1-receptor-mediated responses. Thus, the vasodilatory role of TRPV1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the ‘sympatholytic’ effect of TRPV1 activation and known endogenous activators (anandamide, reactive oxygen species, H+, etc.), TRPV1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV1) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41–89 years) were studied using wire myography with capsaicin (TRPV1 agonist) and without (control). Specifically, phenylephrine (α1-adrenergic receptor agonist), dexmedetomidine (α2-adrenergic receptor agonist), ACh and sodium nitroprusside concentration–response curves were established to assess the role of TRPV1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length–tensionmax (LTmax) and capsaicin, 21 ± 5%LTmax] and dexmedetomidine (control, 29 ± 12%LTmax and capsaicin, 2 ± 3%LTmax), while robustly enhancing maximal vasorelaxation with ACh (control, 78 ± 8% vasorelaxation and capsaicin, 108 ± 13% vasorelaxation) and less clearly enhancing the sodium nitroprusside response. Denudation of the endothelium greatly attenuated the maximal ACh-induced vasorelaxation equally in the control and capsaicin conditions (∼17% vasorelaxation) and abolished the attenuating effect of capsaicin on the maximal phenylephrine response (denuded + capsaicin, 61 ± 20%LTmax). Immunohistochemistry identified a relatively high density of TRPV1 channels in the endothelium compared with the smooth muscle of the SMFAs, but because of the far greater volume of smooth muscle, total TRPV1 protein content was not significantly attenuated by denudation. Thus, SMFAs ubiquitously express functional TRPV1 channels, which alter vascular function, in terms of α1-receptors, in a predominantly endothelium-dependent manner, conceivably contributing to the functional sympatholysis and unveiling a therapeutic target

    Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts

    Get PDF
    The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries) that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes) that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes) as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures

    Correcting for optical aberrations using multilayer displays

    Get PDF
    Optical aberrations of the human eye are currently corrected using eyeglasses, contact lenses, or surgery. We describe a fourth option: modifying the composition of displayed content such that the perceived image appears in focus, after passing through an eye with known optical defects. Prior approaches synthesize pre-filtered images by deconvolving the content by the point spread function of the aberrated eye. Such methods have not led to practical applications, due to severely reduced contrast and ringing artifacts. We address these limitations by introducing multilayer pre-filtering, implemented using stacks of semi-transparent, light-emitting layers. By optimizing the layer positions and the partition of spatial frequencies between layers, contrast is improved and ringing artifacts are eliminated. We assess design constraints for multilayer displays; autostereoscopic light field displays are identified as a preferred, thin form factor architecture, allowing synthetic layers to be displaced in response to viewer movement and refractive errors. We assess the benefits of multilayer pre-filtering versus prior light field pre-distortion methods, showing pre-filtering works within the constraints of current display resolutions. We conclude by analyzing benefits and limitations using a prototype multilayer LCD.National Science Foundation (U.S.) (Grant IIS-1116452)Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award)Vodafone (Firm) (Wireless Innovation Award

    The Piazza Peer Data Management System

    Full text link
    • …
    corecore