130 research outputs found

    High-Symmetry Polarization Domains in Low-Symmetry Ferroelectrics

    Full text link
    We present experimental evidence for hexagonal domain faceting in the ferroelectric polymer PVDF-TrFE films having the lower orthorhombic crystallographic symmetry. This effect can arise from purely electrostatic depolarizing forces. We show that in contrast to magnetic bubble shape domains where such type of deformation instability has a predominantly elliptical character, the emergence of more symmetrical circular harmonics is favored in ferroelectrics with high dielectric constant

    Piezoresponse force microscopy for polarity imaging of GaN

    Get PDF
    The polarity distribution of GaN based lateral polarity heterostructures is investigated by piezoresponse force microscopy (PFM). Simultaneous imaging of surface morphology, as well as the phase and magnitude of the piezoelectric response, is performed by PFM on a GaN film with patterned polarities on a c-Al2O3 substrate. We demonstrate that the polarity distribution of GaN based lateral polarity heterostructures can be deduced from the phase image of the piezoresponse with nanometer scale spatial resolution

    Domain wall saddle point morphology in ferroelectric triglycine sulfate

    Get PDF
    Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of interlocking bifurcated domains. Conducting atomic force microscopy, performed close to the saddle points, showed no evidence for highly localized conducting domain wall sections, across which a divergence in polarization might be implied; this supports the notion that localized dipolar rotation occurs to minimize any potential polar discontinuity. Overall, our study, therefore, confirms that mutual domain bifurcation and suspected local dipolar rotation are not unique to lead germanate and instead may be widely present in other uniaxial ferroelectrics

    Imaging Mechanism of Piezoresponse Force Microscopy in Capacitor Structures

    Get PDF
    The image formation mechanism in Piezoresponse Force Microscopy (PFM) of capacitor structures is analyzed. We demonstrate that the spatial resolution is a bilinear function of film and top electrode thicknesses, and derive the corresponding analytical expressions. For many perovskites, the opposite contributions of d31 and d33 components can result in anomalous domain wall profiles. This analysis establishes the applicability limits of PFM for polarization dynamics studies in capacitors, and applies to other structural probes, including focused X-ray studies of capacitor structures.Comment: 20 pages, 3 figures, 2 tables, 1 Aappendix, to be submitted to Appl. Phys. Let

    Epitaxial Bi2FeCrO6 Multiferroic Thin Films

    Full text link
    We present here experimental results obtained on Bi2FeCrO6 (BFCO) epitaxial films deposited by laser ablation directly on SrTiO3 substrates. It has been theoretically predicted, by Baettig and Spaldin, using first-principles density functional theory that BFCO is ferrimagnetic (with a magnetic moment of 2 Bohr magneton per formula unit) and ferroelectric (with a polarization of ~80 microC/cm2 at 0K). The crystal structure has been investigated using X-ray diffraction which shows that the films are epitaxial with a high crystallinity and have a degree of orientation depending of the deposition conditions and that is determined by the substrate crystal structure. Chemical analysis carried out by X-ray Microanalysis and X-ray Photoelectron Spectroscopy (XPS) indicates the correct cationic stoichiometry in the BFCO layer, namely (Bi:Fe:Cr = 2:1:1). XPS depth profiling revealed that the oxidation state of Fe and Cr ions in the film remains 3+ throughout the film thickness and that both Fe and Cr ions are homogeneously distributed throughout the depth. Cross-section high-resolution transmission electron microscopy images together with selected area electron diffraction confirm the crystalline quality of the epitaxial BFCO films with no identifiable foreign phase or inclusion. The multiferroic character of BFCO is proven by ferroelectric and magnetic measurements showing that the films exhibit ferroelectric and magnetic hysteresis at room temperature. In addition, local piezoelectric measurements carried out using piezoresponse force microscopy (PFM) show the presence of ferroelectric domains and their switching at the sub-micron scale.Comment: Accepted for publication in Philosophical Magazine Letter
    corecore