11,236 research outputs found

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure

    Enhanced Optical Dichroism of Graphene Nanoribbons

    Get PDF
    The optical conductivity of graphene nanoribbons is analytical and exactly derived. It is shown that the absence of translation invariance along the transverse direction allows considerable intra-band absorption in a narrow frequency window that varies with the ribbon width, and lies in the THz range domain for ribbons 10-100nm wide. In this spectral region the absorption anisotropy can be as high as two orders of magnitude, which renders the medium strongly dichroic, and allows for a very high degree of polarization (up to ~85) with just a single layer of graphene. The effect is resilient to level broadening of the ribbon spectrum potentially induced by disorder. Using a cavity for impedance enhancement, or a stack of few layer nanoribbons, these values can reach almost 100%. This opens a potential prospect of employing graphene ribbon structures as efficient polarizers in the far IR and THz frequencies.Comment: Revised version. 10 pages, 7 figure

    The Luminosity Function of Galaxies in Compact Groups

    Get PDF
    From R-band images of 39 Hickson compact groups (HCGs), we use galaxy counts to determine a luminosity function extending to M_R=-14.0, approximately two magnitudes deeper than previous compact group luminosity functions. We find that a single Schechter function is a poor fit to the data, so we fit a composite function consisting of separate Schechter functions for the bright and faint galaxies. The bright end is best fit with M^*=-21.6 and alpha=-0.52 and the faint end with M^*=-16.1 and alpha=-1.17. The decreasing bright end slope implies a deficit of intermediate luminosity galaxies in our sample of HCGs and the faint end slope is slightly steeper than that reported for earlier HCG luminosity functions. Furthermore, luminosity functions of subsets of our sample reveal more substantial dwarf populations for groups with x-ray halos, groups with tidal dwarf candidates, and groups with a dominant elliptical or lenticular galaxy. Collectively, these results support the hypothesis that within compact groups, the initial dwarf galaxy population is replenished by "subsequent generations" formed in the tidal debris of giant galaxy interactions.Comment: 26 pages, to be published in The Astrophysical Journal, 8 greyscale plates (figures 1 and 2) can be retrieved at http://www.astro.psu.edu/users/sdh/pubs.htm

    Magnetic properties of GdT2T_2Zn20_{20} (T = Fe, Co) investigated by X-ray diffraction and spectroscopy

    Get PDF
    We investigate the magnetic and electronic properties of the GdT2T_2Zn20_{20} (TT = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS), X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) techniques. The XRMS measurements reveal that the GdCo2_2Zn20_{20} compound has a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ\vec{\tau} = (12,12,12)(\frac{1}{2},\frac{1}{2},\frac{1}{2}) below the N\'eel temperature (TNT_N \sim 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6\Gamma_6. For the ferromagnetic GdFe2_2Zn20_{20} compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD techniques. A strong XMCD signal of about 12.5 %\% and 9.7 %\% is observed below the Curie temperature (TCT_C \sim 85 K) at the Gd-L2L_2 and L3L_3 edges, respectively. In addition, a small magnetic signal of about 0.06 %\% of the jump is recorded at the Zn KK-edge suggesting that the Zn 4pp states are spin polarized by the Gd 5dd extended orbitals

    HIV-2 viral production and infectivity are affected by APO3 host factors

    Get PDF
    Poster presented at the 7th Postgraduate iMed.ULisboa Students Meeting. Faculty of Pharmacy, Universidade de Lisboa, 15-16 July 2015.Egas Moniz - Cooperativa de Ensino Superior CRL and Fundação para a Ciência e Tecnologia, Lisbon, Portuga

    Temperature independent band structure of WTe2 as observed from ARPES

    Full text link
    Extremely large magnetoresistance (XMR), observed in transition metal dichalcogendies, WTe2_2, has attracted recently a great deal of research interests as it shows no sign of saturation up to the magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there has been a lot of discussion on the role of band structure changes on the temperature dependent XMR in this compound. In this contribution, we study the band structure of WTe2_2 using angle-resolved photoemission spectroscopy (ARPES) and first-principle calculations to demonstrate that the temperature dependent band structure has no substantial effect on the temperature dependent XMR as our measurements do not show band structure changes on increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similar to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide invaluable information in shaping the mechanism of temperature dependent XMR in WTe2_2.Comment: 7 pages, 3 figures. arXiv admin note: text overlap with arXiv:1705.0721

    Using the best linear predictor (BLP) in the selection between and among half-sib progenies of the CMS-39 maize population.

    Get PDF
    Data of corn ear production (kg/ha) of 196 half-sib progenies (HSP) of the maize population CMS-39 obtained from experiments carried out in four environments were used to adapt and assess the BLP method (best linear predictor) in comparison with to the selection among and within half-sib progenies (SAWHSP). The 196 HSP of the CMS-39 population developed by the National Center for Maize and Sorghum Research (CNPMS-EMBRAPA) were related through their pedigree with the recombined progenies of the previous selection cycle. The two methodologies used for the selection of the twenty best half-sib progenies. BLP and SAWHSP, led to similar expected genetic grains. There was a tendency in the BLP methodology to select a greater number of related progenies because of the previous generation (pedigree) than the other method. This implies that greater care with the effictive size of the population must be taken with this method. The SAWHSP methodology was efficient in isolating tha aditive genetic variance component from the phenotypic component. The pedigree system, although unnecessary for the routine use of the SAWHSP methodology, allowed the prediction of an increase in the inbreeding of the population in the long term SAWHSP selection when recombination is simultaneous to creation of new progenies
    corecore