18 research outputs found

    Quantum mechanic tunneling and efficiency of Faraday current-generating process in porous nanostructures

    Full text link
    Thermodynamics and kinetics of lithium intercalation into C--SiO2_2 nanocomposites are investigated. Dependencies of both differential capacity and intercalation kinetics on the nanocomposite size are established. The processes are analyzed in terms of the impedance model. The obtained results are explained based on the quantum effect of interference blockade of electron tunneling into a nonmetallic nanoparticle. Propositions for the new electrochemical energy storage technology are presented.Comment: 12 pages, 10 figure

    Low-temperature vibration characteristics in InSe single crystals intercalated by Ni

    No full text
    The theoretical and experimental study of low-temperature heat capacity of InSe intercalated by nickel as a function of temperature has been carried out in range 0.3–30 K. The effect of intercalation by nickel on phonon heat capacity (Cph) of InSe has been investigated. Two peaks observed in relative change of phonon specific heat (∆Cph/Cph) suggested non-Debye excess in heat capacity for all intercalated NixInSe systems

    Gigantic Capacito-Energetic Parameters of Lithium-Intercalation Current Generation Reaction in Nanodispersed TiO2TiO_{2} with Defective Structure

    No full text
    To determine the reasons of the difference between the parameters of lithium intercalation process for materials of the same nature, the nanodispersed TiO2TiO_{2} was synthesized by pyrogenic method from TiCl4TiCl_{4} in hydrogen-air flame with SiCl4SiCl_{4} doping precursor and was compared with TiO2TiO_{2} of "Merck" quality. The X-ray analysis with the use of small-angle scattering method, electronic scanning microscopy and impedance spectroscopy were used to determine aforesaid parameters. Obtained results show that the reason of such behaviour lays in size effect and in modification of energetic topology of impurity system. Thermodynamic parameters of intercalation reaction agree well with investigated properties of ceramic samples

    Особливості магнітоопору монокристалів InSe і GaSe

    No full text
    Giant magnetoresistance in the laser intercalated by chrome single crystals of gallium selenide and indium selenide is observed. Specific resistance in xInSe is changed both in its value and sign. In xGaSe the applied magnetic field causes 87% change of the specific resistance. Reason of the anomalous magnetoresistance is analyzed.Гігантський магнітоопір в лазерному інтеркальованого хромом монокристалів селеніду галію і селеніду індію спостерігається. Питомий опір в xInSe змінюється як у величині і знаку. У xGaSe прикладеного магнітного поля викликає 87% зміна питомого опору. Причина аномального магнетоопору аналізується

    Mechanism of Capacitive Charge of Electrodes on the Basis of Activated Carbon Materials in ZnI2 Solution

    Full text link
    The electrochemical and thermodynamic features of the iodine electrosorption process on the surface of microporous activated carbon materials (ACM) (ST BET=1600–1900m2×g-1) in 25 % ZnI2 aqueous solution are investigated. The kinetic reversibility of the process, electrode polarization, fractional surface coverage by iodine atoms (θІ) are found. The thermodynamic analysis of the surface adsorption compound of ACM with iodine allows using the known Frumkin adsorption ratios to describe the iodine adsorption process. Comparison of theoretical adsorption isotherms (TAI) and the relationship between the specific pseudocapacity (Cp) and θІ (Сp–θІ) with practical galvanostatic discharge curves built from experimental data is made, and the parameter of the interatomic interaction (g) in the adsorption monolayer is determined. Correlation of the data of electrochemical impedance spectroscopy (EIS) with the data of galvanostatic cycles (GC) is found. Good agreement of the EIS experimental data with transmission electrical equivalent circuit for the porous electrode is obtained. The study provides insights into the process mechanism, the EEC of the interface between electrode and electrolyte, and efficiency of the material as a positive electrode in molecular energy storage (MES) systems. Sufficiently high efficiency of GC of electrodes based on ACM1 (ST BET=1600 m2×g-1), and ACM2 (ST BET=1900 m2×g-1) in the MES system is obtained. The specific discharge of ACM1 Cd=1200 C×g-1 (θІ=0.99) with the Coulomb efficiency η=95 % almost reaches its maximum theoretical value 1,216 C×g-1 (θІ=1). The similarity of the experimental desorption isotherm and Сp-θІ- relationship of ACM1 gives an indication of the process mechanism by the Frumkin model with g=–0,88. The maximum value of ACM1 Cp=F×8.8 m2 obtained according to the EIS is close to 9.4 F×m-2 obtained according to the GC. At the same time, 70 % of the total pseudocapacity of ACM1 has a low time constant τ=RC=82 c

    СУБМІКРОННІ ТА НАНОРОЗМІРНІ СТРУКТУРИ ЕЛЕКТРОНІКИ

    No full text
    If you need full access to the book, please write an email to the Publisher. Your request will be redirected to the author. If s/he is interested, s/he will directly contact you using the email address you have specified to discuss the conditions for obtaining access without the intermediary of the Publisher. The textbook describes the physical-chemical bases of the functioning of submicron and nanoscale electronics structures and the technological principles of their creation using inorganic and organic materials. For students of higher educational establishments of accreditation levels III-IV, studying in the fields of preparation: "Electrical Engineering and Electrotechnology", "Radio Engineering", "Micro- and Nanoelectronics", "Instrumentation", "Physics". Indexing:       Якщо Вам необхідно отримати повний доступ до книги, напишіть електронного листа Видавцю. Ваш запит буде переадресовано автору. У разі його зацікавленості, він безпосередньо зв'яжеться з Вами за вказаною Вами адресою електронної пошти для обговорення умов на отримання доступу без посередництва Видавця. У підручнику викладені фізико-хімічні основи функціонування субмікронних і нанорозмірних структур електроніки та технологічні принципи їх створення з використанням неорганічних та органічних матеріалів. Для студентів вищих навчальних закладів ІІІ–ІV рівнів акредитації, які навчаються за напрямками підготовки: «Електротехніка та електротехнології», «Радіотехніка», «Мікро- та наноелектроніка», «Приладобудування», «Фізика». Індексація:      &nbsp
    corecore