19,355 research outputs found

    Wind and solar powered turbine

    Get PDF
    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover

    Nonlinear Propagation of Light in One Dimensional Periodic Structures

    Full text link
    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion), the periodic structure (photonic band dispersion) and nonlinearity. We present a detailed discussion of the role of these effects individually and in concert. We derive the nonlinear coupled mode equations (NLCME) which govern the envelope of the coupled backward and forward components of the electromagnetic field. We prove the validity of the NLCME description and give explicit estimates for the deviation of the approximation given by NLCME from the {\it exact} dynamics, governed by AMLE. NLCME is known to have gap soliton states. A consequence of our results is the existence of very long-lived {\it gap soliton} states of AMLE. We present numerical simulations which validate as well as illustrate the limits of the theory. Finally, we verify that the assumptions of our model apply to the parameter regimes explored in recent physical experiments in which gap solitons were observed.Comment: To appear in The Journal of Nonlinear Science; 55 pages, 13 figure

    Alien Registration- Holmes, Annie I. (Houlton, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/34553/thumbnail.jp

    Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection

    Full text link
    Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-B\'enard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading order Lyapunov exponent and we quantify the details of their response to the dynamics of defects. The leading order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary dominated dynamics to bulk dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics

    Calculation of isotope shifts and relativistic shifts in CI, CII, CIII and CIV

    Full text link
    We present an accurate ab initio method of calculating isotope shifts and relativistic shifts in atomic spectra. We test the method on neutral carbon and three carbon ions. The relativistic shift of carbon lines may allow them to be included in analyses of quasar absorption spectra that seek to measure possible variations in the fine structure constant, alpha, over the lifetime of the Universe. Carbon isotope shifts can be used to measure isotope abundances in gas clouds: isotope abundances are potentially an important source of systematic error in the alpha-variation studies. These abundances are also needed to study nuclear reactions in stars and supernovae, and test models of chemical evolution of the Universe

    Disease Complementarities and the Evaluation of Public Health Interventions

    Get PDF
    This paper provides a theoretical and empirical investigation of the positive complementarities between disease-specific policies introduced by competing risks of mortality. The incentive to invest in prevention against one cause of death depends positively on the level of survival from other causes. This means that a specific public health intervention has benefits other than the direct medical reduction in mortality: it affects the incentives to fight other diseases so the overall reduction in mortality will, in general, be larger than that predicted by the direct medical effects. We discuss evidence of these cross-disease effects by using data on neo-natal tetanus vaccination through the Expanded Programme on Immunization of the World Health Organization.
    • …
    corecore