19 research outputs found

    Maturation of sleep homeostasis in developing rats: a role for preoptic area neurons

    No full text
    The present study evaluated the hypothesis that developmental changes in hypothalamic sleep-regulatory neuronal circuits contribute to the maturation of sleep homeostasis in rats during the fourth postnatal week. In a longitudinal study, we quantified electrographic measures of sleep during baseline and in response to sleep deprivation (SD) on postnatal days 21/29 (P21/29) and P22/30 (experiment 1). During 24-h baseline recordings on P21, total sleep time (TST) during the light and dark phases did not differ significantly. On P29, TST during the light phase was significantly higher than during the dark phase. Mean duration of non-rapid-eye-movement (NREM) sleep bouts was significantly longer on P29 vs. P21, indicating improved sleep consolidation. On both P22 and P30, rats exhibited increased NREM sleep amounts and NREM electroencephalogram delta power during recovery sleep (RS) compared with baseline. Increased NREM sleep bout length during RS was observed only on P30. In experiment 2, we quantified activity of GABAergic neurons in median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) during SD and RS in separate groups of P22 and P30 rats using c-Fos and glutamic acid decarboxylase (GAD) immunohistochemistry. In P22 rats, numbers of Fos+GAD+ neurons in VLPO did not differ among experimental conditions. In P30 rats, Fos+GAD+ counts in VLPO were elevated during RS. MnPN neuronal activity was state-dependent in P22 rats, but Fos+GAD+ cell counts were higher in P30 rats. These findings support the hypothesis that functional emergence of preoptic sleep-regulatory neurons contributes to the maturation of sleep homeostasis in the developing rat brain

    Association of common genetic variants with risperidone adverse events in a Spanish schizophrenic population

    Get PDF
    Risperidone non-compliance is often high due to undesirable side effects, whose development is in part genetically determined. Studies with genetic variants involved in the pharmacokinetics and pharmacodynamics of risperidone have yielded inconsistent results. Thus, the aim of this study was to investigate the putative association of genetic markers with the occurrence of four frequently observed adverse events secondary to risperidone treatment: sleepiness, weight gain, extrapyramidal symptoms and sexual adverse events. A series of 111 schizophrenia inpatients were genotyped for genetic variants previously associated with or potentially involved in risperidone response. Presence of adverse events was the main variable and potential confounding factors were considered. Allele 16Gly of ADRB2 was significantly associated with a higher risk of sexual adverse events. There were other non-significant trends for DRD3 9Gly and SLC6A4 S alleles. Our results, although preliminary, provide new candidate variants of potential use in risperidone safety prediction.This study was supported by Fondo de Investigation Sanitaria (FIS) EC07/90393, EC07/90466 and EC07/90604 Grants. Berta Almoguera's work is supported by a Rio Hortega Grant from Instituto de Salud Carlos III. Pedro Dorado is supported by Instituto de Salud Carlos III-FIS and European Union (FEDER) Grant CP06/00030. The contribution from the Extremadura group is coordinated in the frame of the Iberoamerican Network of PharmacogeneticsPeer reviewe

    Changing concepts on the role of serotonin in the regulation of sleep and waking

    No full text
    corecore