34,688 research outputs found

    Environmental protection of titanium alloys at high temperatures

    Get PDF
    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking

    Development of high-emittance scales on thoriated nickel-chromium-aluminum-base alloys

    Get PDF
    The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation

    Infrared images of merging galaxies

    Get PDF
    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus

    Recombination and base composition: the case of the highly self-fertilizing plant Arabidopsis thaliana

    Get PDF
    BACKGROUND: Rates of recombination can vary among genomic regions in eukaryotes, and this is believed to have major effects on their genome organization in terms of base composition, DNA repeat density, intron size, evolutionary rates and gene order. In highly self-fertilizing species such as Arabidopsis thaliana, however, heterozygosity is expected to be strongly reduced and recombination will be much less effective, so that its influence on genome organization should be greatly reduced. RESULTS: Here we investigated theoretically the joint effects of recombination and self-fertilization on base composition, and tested the predictions with genomic data from the complete A. thaliana genome. We show that, in this species, both codon-usage bias and GC content do not correlate with the local rates of crossing over, in agreement with our theoretical results. CONCLUSIONS: We conclude that levels of inbreeding modulate the effect of recombination on base composition, and possibly other genomic features (for example, transposable element dynamics). We argue that inbreeding should be considered when interpreting patterns of molecular evolution

    Observations of Reconnection Flows in a Flare on the Solar Disk

    Get PDF
    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares ("CSHKP" model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of SDO/AIA imaging and Hinode/EIS spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.Comment: 9 pages, 5 figures, and 1 table. Accepted for publication in ApJ
    corecore