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Abstract

Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still
circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for
two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region,
expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops,
and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory/
Atmospheric Imaging Assembly imaging and Hinode/EUV Imaging Spectrometer spectroscopic observations
of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes
spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The
reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a
clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most
events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare
ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and
favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection
dynamics.

Key words: solar wind – Sun: corona – Sun: coronal mass ejections (CMEs) – Sun: filaments, prominences – Sun:
flares – Sun: UV radiation
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1. Introduction

Solar eruptive events, flares, and associated coronal mass
ejections are attributed to the liberation of free magnetic energy
stored in the corona, possibly due to magnetohydrodynamic
(MHD) instabilities and magnetic reconnection. The “CSHKP”
model is the standard 2D framework for two-ribbon flares
(Carmichael 1964; Sturrock 1966; Hirayama 1974; Kopp &
Pneuman 1976) and predicts several different flows in the flare
corona. There is an inflow of plasma and magnetic field toward
a diffusion region where reconnection occurs and an outflow
from this region of newly reconnected field retracting due to
magnetic tension. Both flows are (roughly) perpendicular to the
magnetic field direction. There is cooling, condensing material
flowing along post-reconnection loops down toward the solar
surface. The flare or eruption may influence the ubiquitous
upflows at the edge of the active region (AR). In this Letter, we
show that a plasma upflow parallel to the inflow field may also
happen as the field erupts.

Evidence for reconnection inflows has been reported in a
handful of flares, mainly at the solar limb. Yokoyama et al.
(2001) reported the first clear extreme-ultraviolet (EUV) inflow
following an eruption, with a bright cusp—another ingredient
in the CSHKP model—seen underneath in soft X-rays (SXRs).
Narukage & Shibata (2006) found a further six limb inflow
events in nearly five years of Extreme-ultraviolet Imaging
Telescope (EIT) observations. A bright, elongated structure in
the inflow convergence region was claimed by Lin et al. (2005)
to be a current sheet, and the features flowing up along it to be

reconnection outflows. A few more inflows have been reported
using observations from the Atmospheric Imaging Assembly
(AIA; Lemen et al. 2012) on board the Solar Dynamics
Observatory (SDO; Pesnell et al. 2012). Savage et al. (2012)
studied an inflow with speed up to ~ -300 km s 1 in an
impulsive flare, while other reports, usually of long-duration
events have speeds below ~ -100 km s 1. Sun et al. (2015)
reported groups of inflowing “threads” with plasma heating
where they make contact, but without a clear hot cusp. In three
different flares, Su et al. (2013), Yang et al. (2015), and Zhu
et al. (2016) observed a reconnection inflow with two sets of
closed loops approaching each other—a different geometry
from the standard model.
Reconnection outflows—the retraction of post-reconnection

magnetic loops—have occasionally been reported in SXR limb
flares (Forbes & Acton 1996; Reeves et al. 2008), but EUV is
better at picking out retracting structures. Liu et al. (2013)
detected many individual retracting loops in AIA
131Åobservations of a limb flare, with speeds from tens to
hundreds of -km s 1. Imada et al. (2013) combined AIA and
Hinode EUV Imaging Spectrometer (EIS; Culhane et al. 2007)
observations to infer that the hot reconnected loops ∼30 MK
could shrink at a speed above -500 km s 1. Supra-arcade
downflows, the dark voids in EUV and SXR observations
appearing high in the corona and traveling down at tens to
hundreds of -km s 1, are interpreted as the cross-sections of
underdense, retracting post-reconnection loops, or the “wakes”
left as they descend (e.g., McKenzie & Hudson 1999). Plasma
draining in flare loops has also been observed (e.g., Savage
et al. 2012). EIS spectroscopic observations show that the
draining speed along AR loops at quiescent stage (when there
is no flare or eruption) is around tens of -km s 1 (Del
Zanna 2008; Syntelis et al. 2012).
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The inflow Alfvén Mach number defining the reconnection
rate for these events is estimated at ~ - -–10 101 3 in the fast
reconnection regime (the slow Sweet-Parker rate is
~ - -–10 104 6 for typical coronal conditions; Aschwanden 2005).
But a good estimate of the reconnection rate requires knowl-
edge of the coronal magnetic field strength, which is difficult to
obtain in the limb events stated above. Their position also
makes the relationship between cusp loops and footpoints hard
to ascertain as the footpoints are usually obscured by the solar
limb or complex foreground structures.

We report here on a long-lasting reconnection event near the
disk center, focusing on its flow processes and magnetic
reconnection rate. Li et al. (2017) studied this event using
SDO/AIA, demonstrating the relationship between the erupt-
ing flux rope and magnetic reconnection, and the transition
from 3D to 2D reconnection. The event’s location and quasi-
2D geometry in the late phase permit a good estimate of the
coronal Alfvén speed and reconnection rate. It exhibits the
norms of the standard CSHKP model, with a well-formed cusp
underneath inflow threads that can be mapped well to their
lower-atmosphere counterparts. The field below the cusp
contracts and cools (though the brightest portion rises). We
also find spectroscopic evidence for a new kind of plasma
upflow associated with the expanding but closed inflow field
during a flare, distinct from the common plasma upflows at the
AR boundary at the quiescent stage that have been reported by
previous authors.

2. Observations and Analyses

2.1. Instruments and Data Reduction

SOL2016-03-23T03:54 was a Geostationary Operational
Environmental Satellite (GOES) class C1.1 flare in AR NOAA
12524 (N15W16). We study it from ∼01:00 UT to ∼07:00 UT.
The SDO/AIA and Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012) provide EUV images and photospheric
magnetograms, respectively, that have been processed using
standard software (Boerner et al. 2012) and rotated to 01:00
UT. The EIS on Hinode observes the AR in a slow raster from
04:01:50 UT to 05:02:42 UT with a 1″ slit moving around
every minute from solar west to east over a field of view
119 8×512 0. Line-of-sight velocities are obtained from
Fe XII and Fe XIII lines, which are intense and also visible
outside the AR, for estimating a reliable rest wavelength.
Standard EIS data reduction procedures were used, and the
spectral lines were fitted with single Gaussians. The rest
wavelength was extracted from a quiet-Sun region

~ -  ( )X 24 , 85 and ~  ( )Y 157 , 207 (excluding missing
values along a vertical data gap at ~ X 13 ) free of AR
emission. The upper-limit uncertainty is ~ -5 km s 1 for both
Fe XII 195.12Å and Fe XIII 202.04Å, and Fe XVI 262.98Å has
an upper-limit uncertainty of ~ -9 km s 1. The alignment
between AIA and EIS is conducted by eye and also takes
Fe IX 197.86Å into account (but Fe IX intensity is too low for
reliable Doppler velocity diagnostics). Fe IX is aligned with
171Å, Fe XII with 193Å, Fe XIII with 211Å, and Fe XVI with
335Å, as their characteristic temperatures are comparable
separately. The accuracy of the alignment is ∼1″–2″.

2.2. Evolution of the Flare

Figure 1 shows the overall evolution of the flare. Before the
flare (Figure 1(a)) a large arcade of loops in 171Å envelopes a

dark void underneath, possibly a flux rope (Li et al. 2017).
Between the arcade footpoints a filament can vaguely be seen
(Figures 1(b) and (e) show the filament more clearly). In
Figure 1(b), the two ends of the filament suddenly brighten
(microflare), accompanied by a small ejection to the north. This
may show the destabilization of the hosted flux rope, leading to
the subsequent arcade eruption in Figure 1(c). As the arcade
erupts, its legs converge, forming a dark cusp underneath in
171Å, shown in Figure 1(d). The flare ensues with a bright
cusp in 131Å (red) inside the dark cusp in 171Å. Then two
ribbons sweep across the footpoints of the bright cusp and
separate away from the filament, seen in 304Å in Figure 1(e).
Figure 1(f) shows the post-flare state with flaring loops
appearing in 171Å. The main evolution from Figures 1(a),
(c), (d), and (f) reveals that the correspondence between the
pre-flare arcade, the erupting arcade, the bright cusp, and the
flaring loops is well established in terms of their footpoint
locations, indicated by the two magenta circles. Figures 2(a)–(c)
show the time slices corresponding to cuts 1–3 in Figure 1,
respectively. A light curve in 304Å for the microflare in
Figure 1(b) is added in Figure 2(c) and the GOES SXR light
curves in Figure 2(d). The vertical dotted line “A” indicates the
timing of the microflare and the arcade eruption and line “B” the
timing of the inflow and the flare. Different flows are discussed
in the following paragraphs.

2.3. Flows in the Flare

Reconnection Inflows—Figure 2(a) shows the evolution
along cut 1 through the flare cusp region. Before the flare, the
threads forming the arcade legs separate as the flux rope erupts.
The threads then accelerate toward the (presumed) central
diffusion region, approaching with projected speeds of tens of

-km s 1, similar on either side. These are fitted with exponential
equations by picking a few points along specific inflow features
and extrapolated to the diffusion regions indicated by the cyan
boxes. The speeds at the final times of the fit curves are larger
than those in Li et al. (2017) because we choose a cut with a
higher altitude than theirs, closer to the reconnection site at
03:50 UT in Figure 1(d), in order to account for the
progressively higher up reconnection site. Accelerated inflows
were also found by Sun et al. (2015) and Zhu et al. (2016).
After the GOES peak, the western leg gradually fades, while
the flow of the outer threads of the eastern leg starts to
decelerate toward the central region, reducing to a few -km s 1.
Figure 2(c) shows the corresponding ribbon separation, also
with similar speed on each side.
Reconnection Outflows—The post-reconnection outflow is

manifested as a contraction of the loops underneath the cusp,
visible as bright and dark striations in the stackplot
(Figure 2(b)) of superposed 131Å and 94Å slices, on a linear
intensity scale, along cut 2 vertically down through the cusp
loops (also can be seen in the reference image of Figure 2(d) on
a logarithmic intensity scale in 131Å). The yellow dashed line
in Figure 2(b) shows the looptop in the cusp declining in
altitude with time, illustrating the contraction of the cusp loops.
The contraction decelerates with time, while the loops also cool
down from 131Å (∼10 MK) to 94Å (∼6.8 MK). This is not
well observed in the past to our knowledge. Meanwhile,
the brightest portion of the cusp rises, as expected if the
reconnection site progressively moves upward. We note
the qualitative similarity between the observed trajectories of
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Figure 1. Evolution of the flare. Panels (a), (c), (d), and (f) show the main evolution sequence in composite AIA 131 Å and 171 Å images. (b) The microflare and
small ejection in the 304 Å difference image just before the arcade eruption. The HMI magnetogram contours at ±125 G are overlaid. The blue rectangle is used for
the light curve in Figure 2(c). (e) The ribbon separation in 304 Å. The magenta circles in each image show the relevant footpoint locations. Cuts 1–3 are used for time
slices in Figures 2(a)–(c), respectively. The two cyan boxes in panels (c) and (d) are for DEM analysis in Section 2.4.

(An animation of this figure is available.)
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the contracting loops and those calculated by Lin (2004) for a
2D reconnecting current sheet model.

Plasma downflows—Figures 3(a) and (c) show the Fe XVI
and Fe XIII intensity maps from EIS, and Figures 3(b) and (d)
show the corresponding line-of-sight velocity maps. For
comparison, Figures 3(e) and (f) are synthesized AIA “raster”
images that simulate the EIS slit scanning mode, produced by
combining narrow slices of AIA images at the EIS slit locations
and times. Looptops and loop legs of the flare arcades
(Figures 3(b) or (d)) have redshifts of ~ -13 km s 1 indicating
plasma draining, or loop contraction. We consider plasma
draining to be the more likely explanation as the line-of-sight
speed is much larger than the projected contraction speed
~ -1 km s 1 obtained from the hotter 94Å observations at that

time (Figure 2(b)). An interpretation in terms of contraction is
thus difficult to reconcile with the observed arcade geometry.
Plasma upflows—We also have evidence of plasma upflows at

the edge of the AR. The strong blueshift ~ -25 km s 1 at the
eastern footpoint of the cusp (at ~  ( ) ( )X Y, 25 , 400 in
Figures 3(b) and (d)) could indicate chromospheric evaporation
onto the reconnected cusp field (Figures 3(a) and (e)). Just to its
east is an extended blueshift area (enclosed by the yellow dashed
line at the bottom left corner in Figure 3(d)). This area can be
divided into three parts: the strongest blueshift feature indicated by
the magenta dotted line, the “E” region to the east, and the “W”

region to the west. The W region possesses stronger blueshift than
the E region. Note that the strongest blueshift feature in this area is
well aligned with the gap with weak emission in the composite

Figure 2. (a) Time slice of cut 1 for the evolution of the inflow threads. The two cyan boxes at 03:00 UT and also 03:50 UT show the positions used for DEM analysis
in Section 2.4, as in Figures 1(c) and (d). The speeds given are for the final times of the fit curves. (b) Time slice of cut 2 combines 94 Å and 131 Å on a linear
intensity scale, showing the evolution of the bright cusp. Its corresponding image on a logarithmic intensity scale in 131 Å is plotted in panel (d). The yellow dashed fit
curve is the same as the blue one in panel (d), and the black dashed fit curve is the same as the red one in panel (d) but moved downward to match the brightest portion.
(c) Time slice of cut 3 for the evolution of the ribbons. The light curve in 304 Å of the microflare indicated in Figure 1(b) is overlaid. (d) GOES SXR light curves
overlaid on the time slice image of cut 2 in 131 Å on a logarithmic intensity scale for reference. The dotted line A denotes the timings of the arcade eruption and the
microflare and B the timings of the inflow and the C1.1 flare.
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AIA image in Figure 3(e), which boosts our confidence in the
accuracy of the alignment between EIS and AIA.

By comparing Figure 3(d) with Figure 3(e), it can be seen that
the field corresponding to this extended blueshift area has not yet
been reconnected in the main flare related to the bright cusp, so
the blueshifts cannot be explained by the evaporation from the
main flare. Nor can they be attributed to evaporation in the
background, as the 304Å ribbon in Figure 3(f) has not reached
this area. For the strongest blueshift feature indicated by the
magenta line, which is just to the east of the edge of the inflow
threads, we can also exclude it being due to changing field
inclination. If the line-of-sight velocity profiles along the dotted
line, shown in Figure 4, were completely due to the inflow threads
inclining toward us, we would expect a blueshift around zero at
the footpoints and increasing with altitude. The observation in
Figure 4 contradicts this. Figure 4 also excludes a loop siphon
flow, in which the flows accelerate toward higher altitudes
(Aschwanden 2005). An easy way to interpret the blueshift along
the dotted line is to invoke a plasma upflow along a field that
inclines toward us. The same argument also applies to the W
region. For the E region, it is difficult to argue as the velocity
values are comparable to the rest wavelength uncertainty.

2.4. Electron Density Estimate

Differential emission measure (DEM) analysis can be used
to estimate the electron density ne (Hannah & Kontar 2013).
The DEM is defined as x =( )T n dl dTe

2 (Craig &
Brown 1976), and integrating over T results in the emission
measure along the line-of-sight ò òx= =( )t dT n dlEM e

2 .
We calculate the emission measure during (EMfl at 03:50

UT) and before (EMpre at 03:00 UT) the inflow, using the
regularization method of Hannah & Kontar (2012) to recover
x ( )T from the mean intensity in each of the six AIA wavebands
(94, 131, 171, 193, 211, 335Å) with single exposures for both

the eastern and western inflow regions (the two cyan boxes in
Figures 1(c) and (d)). The temperature range used as input is
105.5–106.6 K. The resulting DEM enhancement caused by the
inflow concentrates between 105.8 and 106.3 K, consistent with
AIA observations, as the inflow threads can be most clearly
seen in AIA 171Å, which is more sensitive to this temperature
range compared to other filters. However, the resulting EMs
also contain a contribution from the background and

Figure 3. ((a), (b)) Fe XVI 262.98 Å intensity and Doppler velocity maps. ((c), (d)) Fe XIII 202.04 Å intensity and Doppler velocity maps (Fe XII 195.12 Å intensity
and Doppler velocity maps are not shown here as they are similar to the ones of Fe XIII). The sampling times of the EIS slit are added above ((a), (c)). ((e), (f))
Synthesized AIA images simulating the EIS slit scanning mode for comparison. 131 Å is red, 171 Å green, and 211 Å blue in panel (e). To align with EIS
observations, they have not been rotated like in Figure 1. The dashed line at the bottom left corner encloses the extended blueshift area in panel (d). The magenta
dotted line is for the longitudinal velocity profiles in Figure 4.

Figure 4. Longitudinal velocity profiles for Fe XII and Fe XIII along the dotted
line in Figure 3. The origin of the X axis represents the bottom of the dotted line.
The dashed line is the linear fit for each profile. “b” represents the slope of the fit
and its s-1 uncertainty. The uncertainty for the rest wavelength estimation is
~ -5 km s 1 for both lines, which would shift the entire profiles up or down.
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foreground corona. If we assume that (i) the background and
foreground density outside the inflow threads does not change
much during the event, and (ii) the density within the inflow
region during the inflow (Figure 1(d)) is much larger than
before the inflow (Figure 1(c)), then we can obtain the emission
measure of the inflow region EMin by taking

= - ( )EM EM EM . 1in fl pre

The electron density of the inflow region can then be estimated by

= ( )n LEM , 2e in

with L being the line-of-sight thickness of the inflow region.
As µ -n Le

0.5 in Equation (2), the estimated density is not
very sensitive to the choice of the thickness L. Thus, we
choose the diameter of the magenta circle in Figure 1 as an
approximation of the thickness of the inflow threads, =L

» ´15 arcsec 1.1 10 cm9 . We then find » ´n 2.1 10e
8 cm−3

and » ´2.0 108 cm−3 for the eastern and western regions,
respectively (Table 1).

Assumption (i) above seems reasonable as no obvious
events (except the inflow) happen during this period along the
chosen boxes’ line of sight. Assumption (ii) could be true, as
first in the pre-inflow stage the two boxes are located within
the dark void region (Figure 1(c)), which means a lack of
emitting plasma, and second the void expansion may further
evacuate the plasma there. And the obtained results above are
consistent with EIS density diagnostics using Fe XIII 202.04
and 203.83Å pair (» ´1.5 108 cm−3) around the same
regions, though the EIS sampling time is after 04:00 UT (as
can be seen in Figure 3) and the reconnection site has already
moved upward.

2.5. Magnetic Reconnection Rate

The magnetic reconnection rate can be represented by the
inflow Alfvén Mach number

= ( )M V V , 3A Ain

where Vin is the inflow speed and VA the local Alfvén speed. Vin

can be estimated using
q= - ( )V V V tan , 4in patt xp

as in Yokoyama et al. (2001), where Vpatt is the apparent inflow
speed obtained from the pattern of inflowing threads, Vxp

the rising speed of the reconnection X-point, and θ the angle
between the inflow threads and the rising direction of the
X-point. This equation accounts for the rising motion of
the reconnection site. The Alfvén speed VA is

pr pm
= » ( )V

B B

m n4 4
5A

e

in in

H

in Gauss units, where Bin is the magnetic field strength in the
inflow region, ρ the mass density, μ the mean atomic weight
(∼1.27 for coronal abundances; Aschwanden 2005), mH the
hydrogen mass, and ne the electron number density. To obtain
Bin, conservation of magnetic flux can be exploited (e.g., Isobe
et al. 2002),

= ( )B V B V , 6in in foot foot

where Bfoot is the vertical magnetic strength at the photosphere
and Vfoot the separation speed of flaring ribbons. As this AR is
close to the solar disk center, HMI longitudinal magnetograms
can be used as a good approximation of the vertical field. By
combining Equations (3)–(6), the final equation for the
reconnection rate is

q
pm=

-( )
( )M

V V

B V
m n

tan
4 , 7A e

patt xp
2

foot foot
H

where the electron number density can be estimated as in
Section 2.4, and other quantities are obtained as described in
the notes to Table 1. The resulting reconnection rates are 0.03
for both the eastern and western inflows.

3. Discussion and Conclusions

We have reported the first comprehensive observations of
reconnection flows on the solar disk. Threads or strands of

Table 1
Magnetic Reconnection Parameters

Region Vpatt
a Vxp

b θc Vin
d Vfoot

e Bfoot
f Bin

g EMin
h Li ne

j VA
k MA

l

( -km s 1) ( -km s 1) (°) ( -km s 1) ( -km s 1) (G) (G) ( -10 cm25 5) arcsec ( -10 cm8 3) ( -km s 1)

Eastern 43 9 27 38 3 131 10 4.8 15 2.1 1371 0.03
Western 49 9 27 44 4 −125 11 4.3 15 2.0 1551 0.03

Notes. These estimates are made at ∼03:50 UT, just before the GOES1–8 Å flux peaks. The method for estimating the reconnection rate MA in the last column is
described in Section 2.5.
a Obtained from Figure 2(a).
b Estimated from the rising speed of the bright cusp in 131 Å in Figures 2(b) and (d).
c Estimated at half the angle of the dark cusp in 171 Å in Figure 1(d).
d Via Equation (4).
e From Figure 2(c).
f Approximated as the mean of the HMI longitudinal magnetic strength above a noise level ∼10 G (Liu et al. 2012) for the magenta circles in Figure 1.
g Via Equation (6) and transformed to absolutes.
h Through the method in Section 2.4.
i Approximated as the diameter of the magenta circle in Figure 1.
j Via Equation (2).
k Through Equation (5).
l Via Equation (3) or (7).
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plasma accelerate and later decelerate toward a presumed
reconnection site, below which a well-defined hot cusp forms,
anchored at the threads’ endpoints. Individual cusp loops shrink
and cool as the brightest portion of the cusp ascends. The
magnetic reconnection rates around the GOES flux peak are 0.03
for both the eastern and western inflows, consistent with fast
reconnection, and in the range of previous studies (Yokoyama
et al. 2001; Lin et al. 2005; Narukage & Shibata 2006; Bemporad
et al. 2010; Savage et al. 2012; Su et al. 2013; Sun et al. 2015;
Zhu et al. 2016). The reconnection is quite symmetric in this case.
According to Equation (7), if Vxp and θ are good observational
estimates, the reconnection rate estimated is most sensitive to Vpatt,
only the transverse component of the real inflow velocity. For a
rough estimation of the lower limit of the reconnection rate, we
double B V,foot foot and reduce ne by a factor of 10, giving
reconnection rates of around 0.003 for both the eastern and
western inflows, which are still in the fast reconnection regime.

There is no emission from the presumed reconnection site; it
may be too short or thin, or at the wrong temperature to be
detected by the instruments used. We note that the upper part of
the dark cusp highlighted in Figure 1(d) is dark in all AIA
wavelengths, implying that it has a very low density or
temperature above the ∼10 MK at which the AIA 131Åfilter
peaks and where the cusp is clearest.

As argued in Section 2.3, possibilities like evaporation from the
main flare, field inclining, and a siphon flow could not be the
reasons for the blueshifts along the dotted line and in the W region
in Figure 3(d). Plasma upflows along field that inclines toward us
could be an explanation for these blueshifts. Blueshift features are
found to be ubiquitous at the edge of ARs from EIS observations
even in non-flaring regions, persisting from hours to days in areas
of weak emission and low density, and possessing velocities
around tens of -km s 1, faster in hotter lines (e.g., Sakao et al.
2007; Del Zanna 2008; Doschek et al. 2008; Harra et al. 2008;
Baker et al. 2009; Démoulin et al. 2013; Brooks et al. 2015). They
are interpreted as upflows by some authors and considered to be a
possible source of the slow solar wind in the heliosphere, but the
real origin of these blueshift features is still controversial (Abbo
et al. 2016 and references therein).

We here propose a distinction between two upflow
components associated with the blueshift features observed in
this event. The strongest blueshift in Figure 3(d) is well aligned
with the gap with weak AIA emission in Figure 3(e), which
may imply an open field short of emitting plasma, while the W
region evidently corresponds to the large-scale closed loops
that are the inflow threads or the legs of the arcade loops
erupting outward1 in Figure 3(e). The potential-field source-
surface (PFSS) model just before the flare in Figure 5 provides
supporting evidence. It well reflects the pre-eruption structure
seen in Figure 1(a) and shows that the extended blueshift area
in Figure 3(d) consists of a mix of open and closed fields. Two
closed-field domains are separated by a very narrow open-field
corridor, which matches with the structure in the extended
blueshift area in Figure 3(d) with the strongest blueshift feature
indicated by the dotted line separating the E and W regions
apart. Thus, it seems that plasma upflows occur along both
open field and large-scale closed loops. The argument above
helps solve the long-standing problem of whether the blueshift-
related upflows at the AR boundary are associated with open or
large-scale closed field (Sakao et al. 2007; Harra et al. 2008;

Baker et al. 2009; Del Zanna et al. 2011; Boutry et al. 2012;
Brooks et al. 2015; Edwards et al. 2016).
As the blueshift levels of the feature indicated by the dotted

line in Figure 3(d) and the W region are quite different
(collimated and stronger along the dotted line), different
mechanisms may be responsible for the associated upflows.
For the upflow in the W region, expansion of related large-scale
closed loops (Harra et al. 2008) could be an explanation. When
the flux tube of the arcade erupts, the plasma within would
expand outward and dilute (Reeves et al. 2010, see the third
row of their Figure 9), which results in depressurization. We
suggest here that the expansion may not be adiabatic, as the
depressurization could induce a plasma upflow from the
coronal base along the legs of the expanding arcade. A vivid
analogy of this depressurization process is the water in a tube
being pumped out by rapidly pulling a plunger, or the air being
pumped in as the volume of the lung is increased. Both the
plasma expansion itself because of the field inflation and the
induced upflow due to depressurization could contribute to
the blueshift observed along the expanding closed field. As the
inflating field is the inflow threads here, the upflow from the
bottom of the corona may serve as a way to increase the plasma
density advected into the reconnection region or other
acceleration regions (e.g., the slow-mode shock), which could
help relax the “electron number problem” (Brown &
Melrose 1977; Fletcher & Hudson 2008) to some extent.
Fermi Gamma-ray Burst Monitor (Meegan et al. 2009)
observations barely show any hard X-ray emission from this
flare (unfortunately, also no observations from the Reuven
Ramaty High Energy Solar Spectroscopic Imager for this
event), implying a very weak requirement for the electron flux.
For a major flare, the eruption and arcade expansion could be
more violent, possibly with a faster upflow and increased
electron supply.

Figure 5. Model field at 00:04 UT just before the arcade eruption and the flare,
derived from the PFSS package of Solarsoft, whose perspective has been
rotated to 04:50 UT in order to compare with the extended blueshift region
observed by EIS in Figure 3(d). It shows a narrow open-field corridor between
two closed-field domains. The open-field corridor extends northward to a
coronal hole. The blue dashed box shows the same region as the bottom left
corner enclosed by the dashed line in Figure 3.

1 The upper part of the inflow threads could be contaminated by the
background arcades that have draining plasma.
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Antiochos et al. (2011) show narrow open-field corridor
maps to separatrices and quasi-separatrix layers (QSLs) in the
heliosphere where the magnetic connectivities change drama-
tically and that they are the natural region for interchange
reconnection between open and closed field to take place (Fisk
et al. 1999; Fisk 2003). Thus, the upflow associated with the
open field here in Figure 5 could be created by reconnection
between the open field and the two closed domains nearby,
which transports plasma from closed field to open field.
Comparing Figures 1(a) with (f), it can be seen that the
intensity of the eastern closed domain has a significant decrease
during the evolution, while the large-scale loops nearby to the
west become more intense, which could mean that an
interaction happens between the eastern closed domain and
the narrow open-field corridor. The main flare or the arcade
eruption observed in the western domain may facilitate or
impede the dynamics.

A characteristic inclination angle of the open field in Figure 5
toward us can be obtained from the PFSS model to be ∼45°.
Figure 3(d) (and also Figure 3(b)) provides the characteristic
values of the longitudinal velocities of the blueshift feature
indicated by the dotted line, the W region, the evaporation
feature, and the plasma draining to be ~ ~- -10 km s , 5 km s ,1 1

~ -25 km s 1, and~ -13 km s 1, respectively. If we assume that all
the fields related to the above features incline toward us with
roughly the same angle of ∼45° as the open field does, the total
speeds of the associated plasma flows traveling along these fields
can be estimated to be ~ ~ ~- - -14 km s , 7 km s , 35 km s1 1 1,
and~ -18 km s 1, respectively. They are all subsonic as the sound
speed for a plasma with a temperature ~T 2.0 MKe or~2.5 MK
(for Fe XIII ~10 K6.3 and Fe XVI ~10 K6.4 , respectively) is =cs

~ -T147 1 MK 208 km se
1 or ~ -232 km s 1 (Aschwanden

2005). The upflow speeds from a few to tens of -km s 1 at the
edge of the AR are consistent with previous EIS observations
(Del Zanna 2008). The evaporation speed~ -35 km s 1 is similar
to the results also obtained by Milligan & Dennis (2009) for a
C-class flare at this temperature range. The plasma draining speed
~ -18 km s 1 is comparable to previous results derived from EIS
spectroscopy (Del Zanna 2008; Syntelis et al. 2012), though they
were measured at the quiet stage of the AR evolution. The plasma
draining at these spectral lines may reflect the warm counterpart
of the cold coronal rain (e.g., Schrijver 2001; Kamio et al. 2011;
Vashalomidze et al. 2015) observed later in 304Å.

In addition, if we take the field inclination into account when
calculating the reconnection rate, this will slightly change the
values of Vxp and θ in Table 1, but the final reconnection rate
around the GOES flux peak will still be close to 0.03 for both
the inflow regions and in agreement with fast reconnection.

Together with Li et al. (2017), this work reveals the 2D and
3D aspects of this event. The wealth of diagnostic information
on the flows and plasma properties around the reconnection
region and at the periphery of the AR can be further used to
explore the energetics of the reconnection process and the
detailed dynamics of flow evolution, while the availability of
HMI vector magnetograms means that the magnetic evolution
and plasma flows can be investigated in more detail using
magnetic field extrapolations and magnetohydrodynamic
simulations.
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