181 research outputs found

    On the possibility to search for double beta decay of initially unstable (alpha/beta radioactive) nuclei

    Full text link
    Possibilities to search for double beta decay of alpha/beta unstable nuclei, many of which have higher energy release than "conventional" (beta stable) double beta decay candidates, are discussed. First experimental half-life limits on double beta decay of radioactive nuclides from U and Th families (trace contaminants of the CaWO_4, CdWO_4 and Gd_2SiO_5 scintillators) were established by reanalyzing the data of low-background measurements in the Solotvina Underground Laboratory with these detectors (1734 h with CaWO_4, 13316 h with CdWO_4, and 13949 h with Gd_2SiO_5 crystals).Comment: 15 pages, 6 figure

    TeO2_2 bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double beta decay experiments

    Get PDF
    CUORE, an array of 988 TeO2_2 bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α\alpha radioactivity. A few years ago it has been pointed out that the signal from β\betas can be tagged by detecting the emitted Cherenkov light, which is not produced by α\alphas. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the QQ-value of the decay. To completely reject the α\alpha background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3-4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO2_2 bolometric experiments able to probe the inverted hierarchy of neutrino masses.Comment: 5 pages, 4 figures. Added referee correction

    Development of a Li2MoO4 scintillating bolometer for low background physics

    Full text link
    We present the performance of a 33 g Li2MoO4 crystal working as a scintillating bolometer. The crystal was tested for more than 400 h in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). This compound shows promising features in the frame of neutron detection, dark matter search (solar axions) and neutrinoless double-beta decay physics. Low temperature scintillating properties were investigated by means of different alpha, beta/gamma and neutron sources, and for the first time the Light Yield for different types of interacting particle is estimated. The detector shows great ability of tagging fast neutron interactions and high intrinsic radiopurity levels (< 90 \muBq/kg for 238-U and < 110 \muBq/kg for 232-Th).Comment: revised versio

    First bolometric measurement of the two neutrino double beta decay of 100^{100}Mo with a ZnMoO4_4 crystals array

    Full text link
    The large statistics collected during the operation of a ZnMoO4_4 array, for a total exposure of 1.3 kg \cdot day of 100^{100}Mo, allowed the first bolometric observation of the two neutrino double beta decay of 100^{100}Mo. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of \sim300 keV. The half-life extracted from the data is T1/22ν_{1/2}^{2\nu}= [7.15 ±\pm 0.37 (stat) ±\pm 0.66 (syst)] \cdot 1018^{18} y.Comment: 6 pages, 2 figure, Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Cavity cooling of a single atom

    Full text link
    All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom

    Photon- and meson-induced reactions on the nucleon

    Full text link
    In an unitary effective Lagrangian model we develop a unified description of both meson scattering and photon-induced reactions on the nucleon. Adding the photon to an already existing model for meson-nucleon scattering yields both Compton and meson photoproduction amplitudes. In a simultaneous fit to all available data involving the final states γN\gamma N, πN\pi N, ππN\pi\pi N, ηN\eta N and KΛK \Lambda the parameters of the nucleon resonances are extracted.Comment: 57 pages, 14 figures, LaTex (uses Revtex and graphicx). Submitted to Phys. Rev. C. References updated, Fig. 14 change

    First observation of alpha decay of 190-Pt to the first excited level (E_{exc}=137.2 keV) of 186-Os

    Full text link
    The alpha decays of naturally occurring platinum isotopes, which are accompanied by the emission of gamma quanta, have been searched for deep underground (3600 m w.e.) in the Gran Sasso National Laboratories of the INFN (Italy). A sample of Pt with mass of 42.5 g and a natural isotopic composition has been measured with a low background HP Ge detector (468 cm^3) during 1815 h. The alpha decay of 190-Pt to the first excited level of 186-Os (J^\pi = 2^+, E_{exc}=137.2 keV) has been observed for the first time, with the half-life determined as: T_{1/2} = 2.6_{-0.3}^{+0.4} (stat.) \pm 0.6 (syst.) \times 10^{14} yr. The T_{1/2} limits for the alpha decays of other Pt isotopes have been determined at level of T_{1/2} \simeq 10^{16}-10^{20} yr. These limits have been set for the first time or they are better than those known from earlier experiments.Comment: 12 pages, 3 figures, accepted for publication on Phys. Rev.

    First array of enriched Zn82^{82}Se bolometers to search for double beta decay

    Get PDF
    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in 82^{82}Se, the Zn82^{82}Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn82^{82}Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0
    corecore