424 research outputs found

    Galaxy Morphology from NICMOS Parallel Imaging

    Get PDF
    We present high resolution NICMOS images of random fields obtained in parallel to other HST observations. We present galaxy number counts reaching H=24. The H-band galaxy counts show good agreement with the deepest I- and K-band counts obtained from ground-based data. We present the distribution of galaxies with morphological type to H<23. We find relatively fewer irregular galaxies compared to an I-band sample from the Hubble Deep Field, which we attribute to their blue color, rather than to morphological K-corrections. We conclude that the irregulars are intrinsically faint blue galaxies at z<1.Comment: 13 pages, including 4 figures. Accepted for publication in ApJ Letter

    Are Particles in Advection-Dominated Accretion Flows Thermal?

    Get PDF
    We investigate the form of the momentum distribution function for protons and electrons in an advection-dominated accretion flow (ADAF). We show that for all accretion rates, Coulomb collisions are too inefficient to thermalize the protons. The proton distribution function is therefore determined by the viscous heating mechanism, which is unknown. The electrons, however, can exchange energy quite efficiently through Coulomb collisions and the emission and absorption of synchrotron photons. We find that for accretion rates greater than \sim 10^{-3} of the Eddington accretion rate, the electrons have a thermal distribution throughout the accretion flow. For lower accretion rates, the electron distribution function is determined by the electron's source of heating, which is primarily adiabatic compression. Using the principle of adiabatic invariance, we show that an adiabatically compressed collisionless gas maintains a thermal distribution until the particle energies become relativistic. We derive a new, non-thermal, distribution function which arises for relativistic energies and provide analytic formulae for the synchrotron radiation from this distribution. Finally, we discuss its implications for the emission spectra from ADAFs.Comment: 29 pages (Latex), 3 Figures. Submitted to Ap

    The Cooling Flow to Accretion Flow Transition

    Full text link
    Cooling flows in galaxy clusters and isolated elliptical galaxies are a source of mass for fueling accretion onto a central supermassive black hole. We calculate the dynamics of accreting matter in the combined gravitational potential of a host galaxy and a central black hole assuming a steady state, spherically symmetric flow (i.e., no angular momentum). The global dynamics depends primarily on the accretion rate. For large accretion rates, no simple, smooth transition between a cooling flow and an accretion flow is possible; the gas cools towards zero temperature just inside its sonic radius, which lies well outside the region where the gravitational influence of the central black hole is important. For accretion rates below a critical value, however, the accreting gas evolves smoothly from a radiatively driven cooling flow at large radii to a nearly adiabatic (Bondi) flow at small radii. We argue that this is the relevant parameter regime for most observed cooling flows. The transition from the cooling flow to the accretion flow should be observable in M87 with the {\it Chandra X-ray Observatory}.Comment: emulateapj.sty, 10 pages incl. 5 figures, to appear in Ap

    The Magnetorotational Instability in a Collisionless Plasma

    Full text link
    We consider the linear axisymmetric stability of a differentially rotating collisionless plasma in the presence of a weak magnetic field; we restrict our analysis to wavelengths much larger than the proton Larmor radius. This is the kinetic version of the magnetorotational instability explored extensively as mechanism for magnetic field amplification and angular momentum transport in accretion disks. The kinetic calculation is appropriate for hot accretion flows onto compact objects and for the growth of very weak magnetic fields, where the collisional mean free path is larger than the wavelength of the unstable modes. We show that the kinetic instability criterion is the same as in MHD, namely that the angular velocity decrease outwards. However, nearly every mode has a linear kinetic growth rate that differs from its MHD counterpart. The kinetic growth rates also depend explicitly on beta, i.e., on the ratio of the gas pressure to the pressure of the seed magnetic field. For beta ~ 1 the kinetic growth rates are similar to the MHD growth rates while for beta >> 1 they differ significantly. For beta >> 1, the fastest growing mode has a growth rate of sqrt{3} Omega for a Keplerian disk, larger than its MHD counterpart; there are also many modes whose growth rates are negligible, < beta^{-1/2} Omega << Omega. We provide a detailed physical interpretation of these results and show that gas pressure forces, rather than just magnetic forces, are central to the behavior of the magnetorotational instability in a collisionless plasma. We also discuss the astrophysical implications of our analysis.Comment: Accepted by ApJ; 24 pages (4 figures

    The distribution and cosmic evolution of massive black hole spins

    Full text link
    We study the expected distribution of massive black hole (MBH) spins and its evolution with cosmic time in the context of hierarchical galaxy formation theories. Our model uses Monte Carlo realizations of the merger hierarchy in a LCDM cosmology, coupled to semi-analytical recipes, to follow the merger history of dark matter halos, the dynamics of the MBHs they host, and their growth via gas accretion and binary coalescences. The coalescence of comparable mass holes increases the spin of MBHs, while the capture of smaller companions in randomly-oriented orbits acts to spin holes down. We find that, given the distribution of MBH binary mass ratios in hierarchical models, binary coalescences alone do not lead to a systematic spin-up or spin-down of MBHs with time: the spin distribution retains memory of its initial conditions. By contrast, because of the Bardeen-Petterson effect, gas accretion via a thin disk tends to spin holes up even if the direction of the spin axis changes randomly in time. In our models, accretion dominates over black hole captures and efficiently spins holes up. The spin distribution is heavily skewed towards fast-rotating Kerr holes, is already in place at early epochs, and does not change much below redshift 5. If accretion is via a thin disk, about 70% of all MBHs are maximally rotating and have radiative efficiencies approaching 30% (assuming a "standard'' spin-efficiency conversion). Even in the conservative case where accretion is via a geometrically thick disk, about 80% of all MBHs have spin parameters a/m > 0.8 and accretion efficiencies > 12%. Rapidly spinning holes with high radiative efficiencies may satisfy constraints based on comparing the local MBH mass density with the mass density inferred from luminous quasars (Soltan's argument).Comment: 15 pages, 9 figures, accepted for publication in the Astrophysical Journa

    “Halal fiction” and the limits of postsecularism: Criticism, critique, and the Muslim in Leila Aboulela’s Minaret

    Get PDF
    This article examines Leila Aboulela’s 2005 novel Minaret, considering the extent to which it can be seen as an example of a postsecular text. The work has been praised by some as one of the most cogent attempts to communicate a life of Islamic faith in the English language novel form. Others have expressed concern about what they perceive as its apparent endorsement of submissiveness and a secondary status for women, along with its silence on some of the more thorny political issues facing Islam in the modern world. I argue that both these readings are shaped by the current “market” for Muslim novels, which places on such texts the onus of being “authentically representative”. Moreover, while apparently underwriting claims to authenticity, Aboulela’s technique of unvarnished realism requires of the reader the kind of suspension of disbelief in the metaphysical that appears to run contrary to the secular trajectory of the English literary novel in the last 300 years. I take issue with binarist versions of the postsecular thesis that equate the post-Enlightenment West with relentless desacralization and the “Islamic world” with a persistent collectivist and spiritual outlook, and suggest that we pay more attention to fundamental narrative elements which recur across the supposed West/East divide. Historically simplistic understandings of the secularization of culture — followed in the last few years by a postsecular turn — misrepresent the actual evolution of the novel. The “religious” persists, albeit transmuted into symbolic schema and themes of material or emotional redemption. I end by arguing for the renewed relevance of the kind of analysis of literary “archetypes” suggested by Northrop Frye, albeit disentangled from its specifically Christian resonances and infused by more attention to cultural cross-pollination. It is this type of approach that seems more accurately to account for the peculiarities of Aboulela’s fiction

    SpeciïŹc emotions as mediators of the effect of intergroup contact on prejudice: ïŹndings across multiple participant and target groups

    Get PDF
    Emotions are increasingly being recognised as important aspects of prejudice and intergroup behaviour. Specifically, emotional mediators play a key role in the process by which intergroup contact reduces prejudice towards outgroups. However, which particular emotions are most important for prejudice reduction, as well as the consistency and generality of emotion–prejudice relations across different in-group–out-group relations, remain uncertain. To address these issues, in Study 1 we examined six distinct positive and negative emotions as mediators of the contact–prejudice relations using representative samples of U.S. White, Black, and Asian American respondents (N = 639). Admiration and anger (but not other emotions) were significant mediators of the effects of previous contact on prejudice, consistently across different perceiver and target ethnic groups. Study 2 examined the same relations with student participants and gay men as the out-group. Admiration and disgust mediated the effect of past contact on attitude. The findings confirm that not only negative emotions (anger or disgust, based on the specific types of threat perceived to be posed by an out-group), but also positive, status- and esteem-related emotions (admiration) mediate effects of contact on prejudice, robustly across several different respondent and target groups

    A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 kpc Scale Ly-alpha Nebula

    Full text link
    We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142-4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 arcsec. They are embedded within a 100 kpc scale diffuse Ly-alpha nebula (or blob) of luminosity ~10^44 erg/s. The radial profiles and colors of both red objects are most naturally explained if they are young elliptical galaxies: the most distant yet found. It is not, however, possible to rule out a model in which they are abnormally compact, extremely dusty starbursting disk galaxies. If they are elliptical galaxies, their stellar populations have inferred masses of ~10^11 solar masses and ages of ~7x10^8 years. Both galaxies have color gradients: their centers are significantly bluer than their outer regions. The surface brightness of both galaxies is roughly an order of magnitude greater than would be predicted by the Kormendy relation. A chain of diffuse star formation extending 1 arcsec from the galaxies may be evidence that they are interacting or merging. The Ly-alpha nebula surrounding the galaxies shows apparent velocity substructure of amplitude ~ 700 km/s. We propose that the Ly-alpha emission from this nebula may be produced by fast shocks, powered either by a galactic superwind or by the release of gravitational potential energy.Comment: 33 pages, 9 figures, ApJ in press (to appear in Jun 10 issue

    An Infrared Coronagraphic Survey for Substellar Companions

    Full text link
    We have used the F160W filter (1.4-1.8 um) and the coronagraph on the Near-InfraRed Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST) to survey 45 single stars with a median age of 0.15 Gyr, an average distance of 30 pc, and an average H-magnitude of 7 mag. For the median age we were capable of detecting a 30 M_Jup companion at separations between 15 and 200 AU. A 5 M_Jup object could have been detected at 30 AU around 36% of our primaries. For several of our targets that were less than 30 Myr old, the lower mass limit was as low as a Jupiter mass, well into the high mass planet region. Results of the entire survey include the proper motion verification of five low-mass stellar companions, two brown dwarfs (HR7329B and TWA5B) and one possible brown dwarf binary (Gl 577B/C).Comment: 11 figures, accepted by A
    • 

    corecore