56 research outputs found

    Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

    Get PDF
    Abstract : Background: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Results: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Conclusions: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons

    Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

    Get PDF
    The role of intrinsic cortical dynamics is a debatable issue. A recent optical imaging study (Kenet et al., 2003) found that activity patterns similar to orientation maps (OMs), emerge in the primary visual cortex (V1) even in the absence of sensory input, suggesting an intrinsic mechanism of OM activation. To better understand these results and shed light on the intrinsic V1 processing, we suggest a neural network model in which OMs are encoded by the intrinsic lateral connections. The proposed connectivity pattern depends on the preferred orientation and, unlike previous models, on the degree of orientation selectivity of the interconnected neurons. We prove that the network has a ring attractor composed of an approximated version of the OMs. Consequently, OMs emerge spontaneously when the network is presented with an unstructured noisy input. Simulations show that the model can be applied to experimental data and generate realistic OMs. We study a variation of the model with spatially restricted connections, and show that it gives rise to states composed of several OMs. We hypothesize that these states can represent local properties of the visual scene

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Development of identical orientation maps for two eyes without common visual experience

    No full text
    IN the mammalian visual cortex, many neurons are driven binocularly and response properties such as orientation preference or spatial frequency tuning are virtually identical for the two eyes(1). A precise match of orientation is essential in order to detect disparity and is therefore a prerequisite for stereoscopic vision. It is not clear whether this match is accomplished by activity-dependent mechanisms together wit the common visual experience normally received by the eyes(2,3), or whether the visual system relies on other, perhaps even innate, cues to achieve this task(4-7). Here we test whether visual experience is responsible for the match in a reverse-suturing experiment in which kittens were raised so that both eyes were never able to see at the same time. A comparison of the layout of the two maps formed under these conditions showed them to be virtually identical. Considering that the two eyes never had common visual experience, this indicates that correlated visual input is not required for the alignment of orientation preference maps

    Organization of the visual cortex - Reply

    No full text

    Development of orientation preference in the mammalian visual cortex

    No full text
    Recent experiments have studied the development of orientation selectivity in normal animals, visually deprived animals, and animals where patterns of neuronal activity have been altered. Results of these experiments indicate that orientation tuning appears very early in development, and that normal patterns of activity are necessary for its normal development. Visual experience is not needed for early development orientation, but is crucial for maintaining orientation selectivity. Neuronal activity and vision thus seem to play similar roles in the development of orientation selectivity as they do in the development of eye-specific segregation in the Visual system. (C) 1999 John Wiley &Sons. Inc

    Development of orientation preference maps in area 18 of kitten visual cortex

    No full text
    We investigated the development of orientation preference maps in the visual cortex of kittens by repeated optical imaging from the same animal. Orientation maps became detectable for the first time around postnatal day (P) 17 and improved continuously in strength until P30, the time at which their appearance became adultlike. During this developmental period the overall geometry of the maps remained unchanged, suggesting that the layout of the orientation map is specified prior to P17. Hence, before the visual cortex becomes susceptible to experience-dependent modifications its functional architecture is largely specified. This suggests that the initial development and layout of orientation preference maps are determined by intrinsic processes that are independent of visual experience, This conclusion is further supported by the result that orientation maps were well expressed at P24 in binocularly deprived kittens. Because the appearance of the first orientation-selective neurons and the subsequent development of orientation preference maps correlated well with the time course of the expression and refinement of clustered horizontal connections, we propose that these connections might contribute to the specification of orientation preference maps

    Orientation selectivity in pinwheel centers in cat striate cortex

    No full text
    In primary visual cortex of higher mammals neurons are grouped according to their orientation preference, forming ''pinwheels'' around ''orientation centers.'' Although the general structure of orientation maps is largely resolved, the microscopic arrangement of neuronal response properties in the orientation centers has remained elusive. The tetrode technique, enabling multiple single-unit recordings, in combination with intrinsic signal imaging was used to reveal the fine-grain structure of orientation maps in these locations. The results show that orientation centers represent locations where orientation columns converge containing normal, sharply tuned neurons of different orientation preference lying in close proximity

    Intrinsic and environmental factors in the development of functional maps in cat visual cortex

    No full text
    In the mammalian visual cortex, key neuronal response properties such as orientation preference and ocular dominance (OD) are mapped in an orderly fashion across the cortical surface. It has been known for some time that manipulating early postnatal visual experience can change the appearance of the OD map. Similar evidence for developmental plasticity of the orientation map has been scarce. We employed optical imaging of intrinsic signals to examine the contribution of intrinsic and environmental factors to the development of cortical maps, using the paradigms of strabismus, reverse occlusion and rearing in a single-orientation environment ('stripe-rearing'). For several weeks after induction of strabismus, the pattern of OD domains remained stable in young kittens. The isotropic magnification of the OD map matched the postnatal growth of the Visual cortical surface during the same period. In reverse-occluded and in stripe-reared kittens, orientation preference maps obtained through the left and the right eye were very similar, although the two eyes had never shared any visual experience. We suggest that the geometry of functional maps in the visual cortex is intrinsically determined, while the relative strength of representation of different response properties can be modified through visual experience. (C) 1998 Elsevier Science Ltd. All rights reserved
    • 

    corecore