2,295 research outputs found
CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors
CoGeNT employs p-type point-contact (PPC) germanium detectors to search for
Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy
threshold and ability to reject surface backgrounds, this type of device allows
an emphasis on low-mass dark matter candidates (wimp mass of about 10 GeV/c2).
We report on the characteristics of the PPC detector presently taking data at
the Soudan Underground Laboratory, elaborating on aspects of shielding, data
acquisition, instrumental stability, data analysis, and background estimation.
A detailed background model is used to investigate the low energy excess of
events previously reported, and to assess the possibility of temporal
modulations in the low-energy event rate. Extensive simulations of all
presently known backgrounds do not provide a viable background explanation for
the excess of low-energy events in the CoGeNT data, or the previously observed
temporal variation in the event rate. Also reported on for the first time is a
determination of the surface (slow pulse rise time) event contamination in the
data as a function of energy. We conclude that the CoGeNT detector technology
is well suited to search for the annual modulation signature expected from dark
matter particle interactions in the region of WIMP mass and coupling favored by
the DAMA/LIBRA resultsComment: 20 pages, 31 figures. Several figures have been added, including an
updated allowed region (both 90% and 99% confidence level contours) based on
this analysis. There is also the addition of a Pb-210 background estimat
Experimental constraints on a dark matter origin for the DAMA annual modulation effect
A claim for evidence of dark matter interactions in the DAMA experiment has
been recently reinforced. We employ a new type of germanium detector to
conclusively rule out a standard isothermal galactic halo of Weakly Interacting
Massive Particles (WIMPs) as the explanation for the annual modulation effect
leading to the claim. Bounds are similarly imposed on a suggestion that dark
pseudoscalars mightlead to the effect. We describe the sensitivity to light
dark matter particles achievable with our device, in particular to
Next-to-Minimal Supersymmetric Model candidates.Comment: v4: introduces recent results from arXiv:0807.3279 and
arXiv:0807.2926. Sensitivity to pseudoscalars is revised in light of the
first. Discussion on the subject adde
Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector
We report on several features present in the energy spectrum from an ultra
low-noise germanium detector operated at 2,100 m.w.e. By implementing a new
technique able to reject surface events, a number of cosmogenic peaks can be
observed for the first time. We discuss several possible causes for an
irreducible excess of bulk-like events below 3 keVee, including a dark matter
candidate common to the DAMA/LIBRA annual modulation effect, the hint of a
signal in CDMS, and phenomenological predictions. Improved constraints are
placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in
wording, one reference adde
Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols
The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA) and secondary OA (SOA) – observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a tendency of the model to excessively evaporate the freshly formed SOA. Predicted SOA concentrations in our base case were extremely low when photochemistry was not active, especially overnight, as the SOA formed in the previous day was mostly quickly advected away from the basin. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime OOA concentrations are strongly influenced by a regional background SOA (~1.5 μg/m<sup>3</sup>) of biogenic origin which is transported from the coastal mountain ranges into the Mexico City basin. The presence of biogenic SOA in Mexico City was confirmed by SOA tracer-derived estimates that have reported 1.14 (&plusmn;0.22) μg/m<sup>3</sup> of biogenic SOA at T0, and 1.35 (&plusmn;0.24) μg/m<sup>3</sup> at T1, which are of the same order as the model. Consistent with other recent studies, we find that biogenic SOA does not appear to be underestimated significantly by traditional models, in strong contrast to what is observed for anthropogenic pollution. The relative contribution of biogenic SOA to predicted monthly mean SOA levels (traditional approach) is estimated to be more than 30% within the city and up to 65% at the regional scale which may help explain the significant amount of modern carbon in the aerosols inside the city during low biomass burning periods. The anthropogenic emissions of isoprene and its nighttime oxidation by NO<sub>3</sub> were also found to enhance the SOA mean concentrations within the city by an additional 15%. Our results confirm the large underestimation of the SOA production by traditional models in polluted regions (estimated as 10–20 tons within the Mexico City metropolitan area during the daily peak), and emphasize for the first time the role of biogenic precursors in this region, indicating that they cannot be neglected in urban modeling studies
Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region
Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days
Observation of Two Narrow States Decaying into and
We report the first observation of two narrow charmed strange baryons
decaying to and , respectively, using data from
the CLEO II detector at CESR. We interpret the observed signals as the
and , the symmetric partners
of the well-established antisymmetric and .
The mass differences and
are measured to be and
, respectively.Comment: 11 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Study of Gluon versus Quark Fragmentation in and Events at \sqrt{s}=10 GeV
Using data collected with the CLEO II detector at the Cornell Electron
Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity
observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity
observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for
jet-jet masses less than 7 GeV.Comment: 15 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …
